
UNIT-1

Algorithm: The word algorithm comes from the name of a Persian author „Abu Jafar

Mohammed ibn Musa al Khowarizmi‟, who wrote a text book on mathematics. According to

him an algorithm is a set of rules used to perform some calculations either by hand (or) more

usually on a machine.

(or)

An algorithm is a finite set of instructions to accomplish a particular task.

Properties (or) Characteristics of Algorithm:

 Input: Zero or more quantities are externally supplied.

 Output: Atleast one quantity is produced.

 Definiteness: Each instruction is clear and unambiguous

 Finiteness: If we trace out the instructions of an algorithm, then for all cases the

algorithm terminates after a finite number of steps.

 Effectiveness: Every instruction must be very basic so that it can be carried out in

principle by a person using only pencil and paper.

Design of Algorithm: The study of algorithm includes many important and active areas

of researches. They are:

 Understanding the problem: This is the very first step in designing of an algorithm.

In this step first of all need to understand the problem statement completely by

reading the problem description carefully. After that, find out what are the necessary

inputs for solving that problem. The input to the algorithm is called instance of the

problem. It is very important to decide the range of inputs so that the boundary

values of algorithm get fixed. The algorithm should work correctly for all valid

inputs.

 Decision Making: After finding the required input set for the given problem we have

to analyze the input and need to decide certain issues such as

 Capabilities of computational devices: It is necessary to know the

computational capabilities of devices on which the algorithm will be running

ie sequential or parallel algorithm. Complex problems require huge amount of

memory and more execution time. For solving such problems it is essential to

have proper choice of a computational device which is space and time

efficient.

 Choice for either exact or approximate problem solving method: The next

important decision is to decide whether the problem is to be solved exactly or

approximately. If the problem needs to be solved correctly then we need exact

algorithm. Otherwise, if the problem is so complex then we need

approximation algorithm.(Example: Salesperson Problem)

 Data Structures: Data Structure and algorithm work together and these are

interdependent. Hence choice of proper data structure is required before

designing the actual algorithm.

 Algorithmic Strategies: It is a general approach by which many problems can

be solved algorithmically. Algorithmic strategies are also called as algorithmic

techniques or algorithmic paradigm.

Algorithm Design Techniques:

 Brute Force: This is straight forward technique with naïve approach.

 Divide-and-Conquer: The problem is divided into smaller instances.

 Dynamic Programming: The results of smaller, reoccurring instances

are obtained to solve the problem.

 Greedy Technique: To solve the problem locally optimal decisions are

made.

 Back tracking: This method is based on the trial and error.

 Specification of Algorithm: There are various ways to specify an algorithm

 Using natural language: It is very simple to specify an algorithm using natural

language

For Example: Write an algorithm to perform addition of two numbers.

Step1: Read the first number say a.

Step2: Read the second number say b.

Step3: Add the two numbers and store the result in a variable c.

Step 4: Display the result.

 Pseudo code: It is a combination of natural language and programming

language

Algorithm sum(a,b):

// Addition of two numbers

//Input: Two numbers a and b

//Output: sum of numbers

{

 c=a+b;

 Write(c)

}

 Flowchart: Flowchart is a graphical representation of an algorithm

Start/ Stop state:

Transition:

Processing or assignment statement:

Conditional Statement:

 Algorithm Verification: Algorithm verification means checking correctness of an

algorithm that is to check whether the algorithm gives correct output in finite amount

of time for a valid set of input.

 Analysis of algorithm: The following factors should consider while analyzing an

algorithm

o Time Complexity: The amount of time taken by an algorithm to run.

o Space Complexity: The amount of space taken by an algorithm to store

variable.

o Range of Input: The design of an algorithm should be such that it should

handle the range of input.

o Simplicity: Simplicity of an algorithm means generating sequence of

instructions which are easy to understand.

o Generality: Generality shows that sometimes it becomes easier to design an

algorithm in more general way rather than designing it for particular set of

input.(Example: GCD)

 Implementation of Algorithm: The implementation of an algorithm is done by

suitable programming language.

 Testing a Program: Testing a program is an activity carried out to expose as many

errors as possible and to correct them.

There are two phases for testing a program:

 Debugging

 Profiling

 Debugging is a technique in which a sample set of data is tested to see

whether faulty results occur or not. If any faulty result occurs then those

results are corrected.

 But in Debugging technique only presence of error is pointed out. Any hidden

error cannot be identified.

 So, we cannot verify correctness of output on sample data. Hence, Profiling

Concept is introduced.

 Profiling or Performance Measurement is the process of executing a correct

program on a sample set of data. Then the time and space required by the

program to execute is measured.

Pseudo Code for Expressing Algorithms: In computational theory, we distinguish

between an algorithm and a program conventions used in writing a pseudo code. Pseudo code

is a combination of natural language and programming language.

Pseudo code is divided into two parts

 Algorithm Heading which contains the keyword algorithm, name of

algorithm, Parameters, Problem Description, Input and Output.

Example: Algorithm name(p1,p2..pn)

 // problem description

 // Input

 //Output

 Comments begin with // and continuous until the end of line.

 Algorithm Body which consists of logical body of the algorithm by

making use of various programming constructs and assignment

statement

 Block of statements that are enclosed within „{ }‟

 Each statement is ended with delimiter „ ; ‟

 An identifier begins with a letter not by digit and can contain

combination of letters and numbers

 Data types are not declared but we assume simple data types

like int, float, char etc.

 The compound data types are represented with node. If an

instance of „P‟ is created to a node then the values of node can

be accessed by using the operator (.) or

Node = record

{

Datatype1 Variable;

Datatype2 Variable;

}

 Assignment of value to a variable is done using assignment

statement

Variable := Expression;

Variable Expression;

 Logical operators such as AND, OR, NOT and Relational

operators such as <,>,<=,>=,==,= are used to get a Boolean

values true or false.

 The array indices are stored within square brackets “[]”. The

multidimensional arrays can also be used in algorithm.

Example: A[i]- Single Dimensional Array, A[i,j]-2D Array

 Loop statements like for, while, repeat until are represented as

follows

for i:=1 to n

{

Statement 1;

Statement 2;

}

 while (condition) do repeat

{ {

Statement 1; Statement 1;

Statement 2; Statement 2;

} } until (condition)

 Conditional Statements such as if-then or if-then-else are

represented as follows:

if(condition) then if(condition) then

{ {

Statement 1; Statement 1;

Statement 2; Statement 2;

} }

 else

 {

Statement 1;

Statement 2;

}

 Input and output are represented by using read and write

read (val);

 write (stmt);

Example 1: Algorithm Max(A,n)

 // A is an array of size n

 {

 Result:=A[1];

 for i:=2 to n do

 if A[i]>Result then Result:=A[i];

 return Result;

 }

Example 2: Algorithm even or odd (n)

 // Finding whether given number is even or odd

 {

 if(n%2==0)

 write(even);

 else

 write(odd);

 }

Example 3: Algorithm Selection Sort(a,n)

 // Sort the array in Ascending order using selection sort

 {

for i:=1 to n do

{

j:=i;

for k:=i+1 to n do

{

 if(a[k]<a[j]) then j:=k;

}

t:=a[i];

a[i]:=a[j];

a[j]:=a[t];

}

 }

Example 4: Algorithm Sort(a,n)

 // Sort elements in ascending order

 {

 for i:=1 to n do

 for j:=i+1 to n-1 do

 {

 if(a[i]>a[j]) then

 {

 temp:=a[i];

 a[i]:=a[j];

 a[j]:=temp;

 }

 }

 }

More Examples do it : Multiplication of two matrices, addition of two matrices, Fibonacci,

factorial, GCD, reverse of a number etc discussed in running notes

Recursive Algorithm: A recursive function is a function that is defined in terms of itself.

Similarly, an algorithm is said to be recursive if the same algorithm is invoked in the body.

An algorithm that calls itself is Direct Recursive. If it calls another algorithm then indirect

recursive.

Example: Algorithm Towers of Hanoi (n,x,y,z)

 // Move top n disks from tower x to tower y

 {

 if(n>=1) then

 {

 Towers of Hanoi(n-1,x,z,y);

 write(“Top disk x to y”)

 Towers of Hanoi (n-1,z,y,x);

 }

 }

Example: Algorithm factorial(n)

 // Factorial using recursion

 {

 if(n:=1) then

 return 1;

 else

 return n*factorial(n-1);

 }

Example: Algorithm Perm (a,k,n)

 {

 if(k==n) then

 write(a[1:n]); //output permutation

 else //a[k:n] has more than one permutation

 //generate this recursively

 for i:=k to n do

 {

 t:=a[k];

 a[k]:=a[i];

 a[i]:=t;

 Perm(a,k+1,n);

 t:=a[k];

 a[k]:=a[i];

 a[i]:=t;

 }

 }

Difference between Algorithm and Pseudo code:

 Algorithm is a well defined sequence of steps that provide a solution for a given

problem.

 Pseudo code is one of the methods that can be used to represent an algorithm.

 Algorithms can be written in natural Language.

 Pseudo code is written in a format that is closely related to high level programming

language structures

 Pseudo code does not use specific programming language syntax and therefore could

be understood by programmer‟s who are familiar with different programming

language.

 Transforming an algorithm presented in pseudo code to programming code could be

much easier than converting an algorithm written in natural language.

Performance Analysis: Algorithm evaluation can be done in two ways either before

execution of a program or after execution of a program

 Priori Estimate (Performance Analysis) - [before execution of a

program]

 Posteriori Estimate (Performance Measurement) - [after execution of a

program]

Efficiency of an algorithm can be done by measuring the performance of algorithm.

Performance Analysis mainly deals with two factors

 Space Complexity: The space complexity of an algorithm is the amount of memory it

needs to run to completion.

 Time Complexity: The Time complexity of an algorithm is the amount of computer

time it needs to run to completion.

Performance Analysis also deals with other factors like

 Measuring Input Range

 Measuring run time

 Computing order of growth of an algorithm

 Computing best case, worst case and average case.

 Space Complexity: It is defined as amount of memory required by an algorithm to

run. Two factors are used to compute space complexity

 Fixed Part: Independent of input and output characteristics. It includes

instruction space, Space for variables, Space for constants and so on.

 Variable Part: It is also called as dynamic part that consists of space

needed by variable whose size is dependent on problem instance at

runtime. It includes Space needed by reference variables, Recursion

stack space and so on.

Let P be an algorithm, then total space required for algorithm is S(P)=C+Sp

Where C is constant which is fixed space and Sp is variable space which varies

depend on the problem

When we analyze space complexity of an algorithm, we concentrate on estimating

Sp(Variable Space)

 Example: Algorithm sum(a,n)

 //adding elements in array

 {

 s:=0;

 for i:=1 to n

 s:=s+a[i];

 return s;

 }

Space needed for this algorithm as follows:

Sum variable„s‟ – 1 word

Loop Variable „i‟ - 1 word total size = n+3 words

Size variable „n‟ – 1 word

Array „a‟ values – n words

Example: Algorithm Rsum(a,n):

 // Addition of elements using recursion

 {

 if(n<=0) then return 0;

 else

 return Rsum(a,n)+a[n];

 }

Space needed for this algorithm as follows:

Return address (Rsum) - 1 word

Pointer to „a‟ - 1 word total size=3 words

Local variable „n‟ - 1 word total space=3(n+1)

Depth of Recursion - n+1 words

 Time Complexity: The amount of time required by an algorithm to complete its

execution. Two factors are used to compute time complexity.

 Compile Time: Does not depend on instance characteristics

 Run Time: Depend on particular problem instance

Let P be an algorithm, then total time required for algorithm is T(P)=C+Tp, Where c

is compile time and Tp is runtime

Time depends on several other factors like

 System Load

 Number of programs that are running

 Instruction set used

 Speed of underlying hardware

Because of these reasons the time complexity is calculated by using frequency count

that is number of times each instruction is executed.

One of the easiest methods to calculate time complexity is counting the number of

steps.

We can determine the number of steps needed by a program to solve a particular

problem instance in one of two ways

 In the First method, introduce a new variable count into the program. This is a

global variable with initial value „0‟.

 The Second method to determine the step count of an algorithm is to build a

table in which we list the total number of steps contributed by each statement.

Example: First Method

Algorithm sum(a,n)

 {

 sum:=0;

 count:=count+1; // Count is global, initially zero

 for i:=1 to n do

 {

 count:=count+1; // for for i:=1 to n(true condition)

 sum:=sum+a[i];

 count:=count+1; // for assignment

 } count:=count+1; // last time for (false condition)

 return sum;

 count:=count+1; // for return stmt

 }

Time complexity: inner loop – count=2n total 2n+3 frequency count: Ɵ(n)

 Remaining – count=3

Second Method

StatementNum Statement Steps per execution Frequency Total steps

1

2

3

4

5

6

7

Algorithm sum(a,n)

{

sum:=0;

for i:=1 to n

sum:=sum+a[i]

return sum;

}

0

0

1

1

1

1

0

-

-

1

n+1

n

1

-

0

0

1

n+1

n

1

0

Total Steps for algorithm 2n+3

Time complexity frequency count: Ɵ(n)

Examples: Matrix Addition: 2n
2
+2n+1 O(n

2
) , Matrix multiplication: 2n

3
+3n

2
+2n+1 O(n

3
)

Algorithm Fibonacci (a,b,c,n)

{

 a:=0;

 b:=1;

 write(a,b);

 for i:=2 to n step 1 do

 {

 c:=a+b; Time complexity: 5n-1 Frequency Count: O(n)

 a:=b;

 b:=c;

 write(c);

 }

}

First Method:

Algorithm Rsum(a,n):

// Addition of elements using recursion

{

 count:=count+1; // for if condition

if(n<=0) then

count:=count+1; // for return stmt

 return 0;

 else

 return Rsum(a,n)+a[n]; // for addition, function invocation and return

}

Time Complexity: 2(for n=0)+ TRsum(n-1)

2+TRsum(n-1) => 2+2+TRsum(n-2) …….. n(2)+TRsum(0) => 2n+2 n>0

Second Method:

StatementNum Statement Steps per execution Frequency

n=0 n>0

Total steps

n=0 n>0

1

2

3

4

5

6

7

Algorithm Rsum(a,n):

{

 if(n<=0) then

 return 0;

else

return Rsum(a,n)+a[n];

}

0

0

1

1

0

1+x

0

-

-

1

1

-

0

-

-

-

1

0

-

1

-

0

0

1

1

0

0

0

0

0

1

0

0

1+x

0

Total Steps for algorithm 2 2+x

T(n)= 2 for n=0

T(n)=2+T(n-1) for n>0 => 2n+2 for (n>0) Frequency count: O(n)

Asymptotic Notations: To choose the best algorithm, we need to check the efficiency of

each algorithm. The efficiency can be measured by computing the space and time

complexities. Commonly used asymptotic notations are:

 Big O notation (Upper Bound)

 Omega Notation (Lower Bound)

 Theta Notation (Tight Bound)

By using these notations we can give time complexities as

o Big O – Worst Case

o Omega – Best Case

o Theta – Average Case

 Big O Notation: It is denoted by „O‟. It is a method of representing the upper bound

of an algorithm that is worst case time complexity of an algorithm.

Definition: A function Let f(n) and g(n) be two non-negative functions and Let n0,nc

are two integers such that the value of input „n‟ is greater than n0(n>n0). Similarly „c‟

is a constant which must be greater than zero(c>0), then we define the function as

follows

 If f(n) ≤ c*g(n) then f(n)=O(g(n)))

 Consider f(n)=2n+2, g(n)=n

2
 so that f(n) < c*g(n) by using mathematical induction

 Show that the time complexity of 3n
2
+4n-2 is O(n

2
)

 Remaining problems see running notes

 Big Omega Notation: It is denoted by Ώ. This notation is used to represent the lower

bound of algorithm runtime that is best case time complexity.

Definition: A function f(n) is said to be Ώ(g(n)) if f(n) is bounded below by some

positive constant multiple of g(n) such that f(n)≥ c*g(n)

 If f(n)≥ c*g(n) then f(n)= Ώ(g(n))

Consider f(n)=2n
2
+5, g(n)=7n show that f(n)= Ώ(g(n))

 Theta Notation: It is denoted by Ɵ. By this method the running time is between

upper bound and lower bound.

Definition: Let f(n) and g(n) be two non-negative functions and consider two positive

numbers c1 and c2 such that c1*g(n)<f(n)< c2*g(n) then f(n)=Ɵ(g(n))

 Consider two functions f(n)=2n+2, g(n)=n find the value of c1 and c2

 Find the theta notation for following function f(n)=3n
2
+5n+2 , g(n)=n

2

 Little o notation: if f(n)=O(g(n))) and f(n)≠Ɵ(g(n)) then f(n)=o(g(n))

 Little Omega notation: if f(n)= Ώ(g(n))and f(n)≠Ɵ(g(n)) then f(n)=ω(g(n))

Practical Complexities:

 Time complexity of an algorithm is generally some function of the instance

characteristics.

 This function is very useful in determining how the time requirements vary as the

instance characteristics change.

 The complexity function can also be used to compare two algorithms P and Q that

perform the same task.

 Assume that algorithm P has complexity Ɵ(n) and algorithm Q has complexity Ɵ(n
2
).

We can assert that algorithm P is faster than algorithm Q for sufficiently large n by

seeing polynomial of high degree.

 How the various functions grow with „n‟. See the below table and figure.

 By seeing the above figure we can say that the function 2

n
 grows very rapidly with n.

Amortized Analysis:

 Amortized Analysis means finding average running time per operation over a worst

case sequence of operations.

 An Amortized analysis indicates that average cost of a single operation is small if

average of sequence of operations is obtained.

 There is a difference between amortized and average case analysis. In average case

analysis, averaging over all possible inputs but in amortized analysis, averaging over a

sequence of operations.

 Suppose that a sequence of operations I1, I2, D1, I3, I4, I5, I6, D2, I7 of insert and

delete operations are performed on set. Assume the actual cost of each seven inserts

takes 1 unit of time and delete operations D1 and D2 takes 8 and 10 respectively.

Total Actual Cost=7+8+10=25

 In amortization scheme, charge some actual cost of operations to other operations.

This reduces cost of one operation and reduces cost of other operations.

 If we charge cost of one unit for each insertion (I1 to I6) from delete operation then

D1=6, D2=6.

 The two units of D1 is transferred to I1, I2 that is I1=2, I2=2 and 4 units of D2 is

transferred that is I3=2, I4=2, I5=2, I6=2, lastly I7=1.

 Total Amortized Cost of I1, I2, D1, I3, I4, I5, I6, D2, I7 = 2+2+6+2+2+2+2++6+1=25

that is amortized cost equal to actual cost. In general amortized cost greater than or

equal to sum of their actual cost

 There are three commonly used techniques used in amortized analysis:

 Aggregate Analysis

 Accounting Method

 Potential Method

 Aggregate Analysis: It is similar to average case analysis but we consider the

average for worst case sequence.

In aggregate analysis, if sequence of „n‟ operations takes worst case time T(n)

in total. In that worst case, the average cost or amortized cost per operation is T(n)/n

Amortized cost > Actual cost

Potential function p(i)=Amortization cost (i) – Actual cost(i) + p(i-1)

 P(n) - P(0) > 0

 Example 1: In Jan, you buy a new car from a dealer who offers you the following

maintenance contract $50 each month other than March, June, September and December,

$100 every March, June and September and $200 every December.

Worst Case Method: $50- Jan,Feb,Apr,May,Jul,Aug,Oct,Nov

 $100- Mar,Jun,Sep

 $200- Dec

Aggregate Method: To use aggregate method for amortized complexity, we first determine

an upper bound on the sum of the costs for the first „n‟ months. As tight a bound as is

possible is desired.

 The sum of the actual monthly costs of the contract for the first „n‟ months is

(50*8)+(100*3)+(200)=400+300+200=900/12=75

MONTH 1 2 3 4 5 6 7 8 9 10 11 12

Actual Cost 50 50 100 50 50 100 50 50 100 50 50 200

Amortized Cost 75 75 75 75 75 75 75 75 75 75 75 75

P(i) 25 50 25 50 75 50 75 100 75 100 125 0

Example 2: Implementing Stacks on Array

Two fundamental operations takes O(1) time – (push, pop) Since each of these

operations runs in O(1) time. The total cost of a sequence „n‟ push and pop operation is O(n).

Now, we add other operation MULTIPOP(S, K) which remove K top objects of stack

S.

MULTIPOP(S, K)

 While not STACK = EMPTY(S) and K>0

 pop(S)

K=K-1

Average Cost of an operation is O(n)/n = O(1). Therefore, all three stack operations have an

amortized cost O(1).

 Accounting Method: Accounting method is performed based on the charges that we

are assigning to the operation. The idea of accounting method as follows:

 Assign different charges to different operations.

 Amount of charge is called amortized cost.

 There will be actual cost which will define the nature of the algorithm.

 Amortization cost can be less than or greater than actual cost.

 When it is greater than actual cost, the difference is saved in an object called

credit

 If it is less than actual cost, the stored credits are used.

 In Accounting method, amortized cost = actual cost + credit.

 Example 1:

MONTH 1 2 3 4 5 6 7 8 9 10 11 12

Actual Cost 50 50 100 50 50 100 50 50 100 50 50 200

Amortized Cost 70 70 70 70 70 70 70 70 70 70 70 70

P(i) 20 40 10 30 50 20 40 60 30 50 70 -60

p(i)=Amortization cost (i) – Actual cost(i) + p(i-1)

 P(n) - P(0) > 0

P(i)=-60<0 , condition failed

Invalid Amortization Cost (70). Again assume amortized cost as 80 and do the calculation

Example 2: Implementing Stacks on Array

 Consider Push and pop operation

 Push: top=max-1 pop: item=a[top]

 top++ top--

 a[top]=item

Let the actual cost required to perform either push or pop operation is 1. Let us assume

amortization cost push=2 and pop=0 then

 For push: Credit= Amortization cost – Actual cost

 =2-1 = 1

For pop: Credit= Amortization cost – Actual cost

 =0-1 = -1

 Potential Method: This method is similar to accounting method in which the concept

the prepay is used. In this method there will be no credit but there will be some

potential difference or energy which can be used to pay for future operations. Instead

of associating potential with specific object, it is associated with whole data structure.

Working of Potential Method: Let D0 be the initial data structure for „n‟ operations.

We have data structure D0 to Dn and then actual cost has C1…Cn. Potential function is

denoted by Ø then

 Amortization cost = actual cost + potential difference

 n n

 ∑ Ci
|
= ∑ Ci+[Ø(Dn) – Ø(D0)]

 i=1 i=1

Example: Consider a stack of size „S‟ then initial charge be „S‟.

 if a push operation is performed on stack then the potential function

Ø(Dn) = S+1

 If a pop operation is perform on stack then potential function Ø(Dn) = S-1

 Potential difference for push operation is Ø(Dn) - Ø(D0) =S+1-S = 1

 Potential difference for pop operation is Ø(Dn) - Ø(D0) =S-1-S = -1

 Amortization cost for push and pop is

Amortization cost = actual cost + potential difference

 = 1+1 = 2

Amortization cost = actual cost + potential difference

 = 1-1 = 0

 Example: Amortized cost = actual cost + P(1)-P(0) = 50+25-0=75

 = actual cost + P(2)-P(1) = 50+50-25=75

 = actual cost + P(3)-P(2) = 100+25-50=75

 :

 :

 :

 Calculate all costs (Maintenance car)

 Note: Amortized analysis is used for algorithms where an occasional operation is very

slow but most of the other operations are faster.

In Amortized analysis, we analyze a sequence of operations and guarantee a

worst case average time which is lower than the worst case time of a particular

expensive operation.

Performance Measurement:

 Performance evaluation can be done in two ways. Before the execution of a program

called Performance Analysis and after the execution of a program called Performance

Measurement.

 Performance Measurement is concerned with obtaining the space and time

requirements of a particular algorithm.

 These quantities depend on the compiler and options used as well as on a computer on

which the algorithm is run.

 To obtain computing or run time of a program we need clocking procedure that

returns the current time in milliseconds.

 Time complexity can be calculated with the help of any programming language like

C, C++, Java and Python.

 In C language, the time events are stores in standard library #include<time.h> and use

GetTime() to get current time in milliseconds.

 In Java language, the time events are stores in package java.util.Date and use

getTime() to get current time in milliseconds.

 In Python language, the time events are stores in package time and use time.time() to

get current time in milliseconds.

 Performance Measurement can be calculated by subtracting start time from current

time that is performance measurement=current time - start time

 Suppose we wish to measure the worst case performance of the sequential search

algorithm. First, we need to decide the values of n for which the times are to be

obtained and then determine for each of the above values of n, the data that exhibit the

worst case behavior.

Algorithm SeqSearch(a,x,n)

{

 i:=n;

 a[0]:=x;

 while(a[i]!=x) do

 i:=i-1;

 return i;

}

 In the worst case, to search for x, given the size n of a. An asymptotic analysis reveals

that this time is ϴ(n). So, we expect a plot of the times to be a straight line.

 To measure the computing time of this algorithm we need to write a TimeSeqSearch

algorithm, in that GetTime() is used to get the current time and start time of algorithm

in milliseconds.

 Finally, performance measurement of an algorithm can be done in milliseconds.

Algorithm TimeSeqSearch(a,x,n)

{

 h:=GetTime();

i:=n;

 a[0]:=x;

 while(a[i]!=x) do

 i:=i-1;

 return i;

 h1:=GetTime();

 t:=h1-h;

 write(t);

}

 Now we are writing an algorithm to measure the time in milliseconds for „n‟ different

values.

Algorithm TimeSearch()

{

 for j:=1 to 1000 do

 {

 a[j]:=j;

 }

 for j:=1 to 10 do

 {

 n[j]:=10*(j-1);

 n[j+10]:=100*j;

 }

 for j:=1 to 20 do

 {

 h:=GetTime();

 k:=SeqSearch(a,0,n[j]);

 h1:=GetTime();

 t:=h1-h;

 write(n[j],t);

 }

 }

 Timing results of above algorithm in milliseconds are

 The times obtained are too small to be of any use to us. Most of the times are zero,

this indicates that precision of our clock is inadequate. The nonzero times are just

noise and are not representative of the time taken.

 To time a short event, it is necessary to repeat it several times and divide the total time

for the event by the number of repetitions

Algorithm TimeSearch()

{

 // Repetition factors

r[21]:={0, 200000, 200000, 150000, 100000, 100000, 100000, 50000,

50000, 50000, 50000, 50000, 50000, 50000, 50000, 50000, 50000,

25000, 25000, 25000, 25000}

 for j:=1 to 1000 do

 {

 a[j]:=j;

 }

 for j:=1 to 10 do

 {

 n[j]:=10*(j-1);

 n[j+10]:=100*j;

 }

 for j:=1 to 20 do

 {

 h:=GetTime();

 for i:=1 to r[j]do

 {

 k:=SeqSearch(a,0,n[j]);

}

 h1:=GetTime();

 t1:=h1-h;

 t:=t1;

 t:=t/r[j];

 write(n[j],t1,t);

 }

}

 Timing results and graph of above algorithm in milliseconds are

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

