
UNIT-1 

Algorithm: The word algorithm comes from the name of a Persian author „Abu Jafar 

Mohammed ibn Musa al Khowarizmi‟, who wrote a text book on mathematics. According to 

him an algorithm is a set of rules used to perform some calculations either by hand (or) more 

usually on a machine. 

(or) 

An algorithm is a finite set of instructions to accomplish a particular task. 

Properties (or) Characteristics of Algorithm: 

 Input: Zero or more quantities are externally supplied. 

 Output: Atleast one quantity is produced.  

 Definiteness: Each instruction is clear and unambiguous 

 Finiteness: If we trace out the instructions of an algorithm, then for all cases the 

algorithm terminates after a finite number of steps. 

 Effectiveness: Every instruction must be very basic so that it can be carried out in 

principle by a person using only pencil and paper. 

Design of Algorithm: The study of algorithm includes many important and active areas 

of researches. They are:  

 Understanding the problem: This is the very first step in designing of an algorithm. 

In this step first of all need to understand the problem statement completely by 

reading the problem description carefully. After that, find out what are the necessary 

inputs for solving that problem. The input to the algorithm is called instance of the 

problem. It is very important to decide the range of inputs so that the boundary 

values of algorithm get fixed. The algorithm should work correctly for all valid 

inputs. 

 

 Decision Making: After finding the required input set for the given problem we have 

to analyze the input and need to decide certain issues such as 

 Capabilities of computational devices: It is necessary to know the 

computational capabilities of devices on which the algorithm will be running 

ie sequential or parallel algorithm. Complex problems require huge amount of 

memory and more execution time. For solving such problems it is essential to 

have proper choice of a computational device which is space and time 

efficient. 

 Choice for either exact or approximate problem solving method: The next 

important decision is to decide whether the problem is to be solved exactly or 

approximately. If the problem needs to be solved correctly then we need exact 

algorithm. Otherwise, if the problem is so complex then we need 

approximation algorithm.(Example: Salesperson Problem) 



 Data Structures: Data Structure and algorithm work together and these are 

interdependent. Hence choice of proper data structure is required before 

designing the actual algorithm. 

 Algorithmic Strategies: It is a general approach by which many problems can 

be solved algorithmically. Algorithmic strategies are also called as algorithmic 

techniques or algorithmic paradigm. 

Algorithm Design Techniques:  

 Brute Force: This is straight forward technique with naïve approach. 

 Divide-and-Conquer: The problem is divided into smaller instances. 

 Dynamic Programming: The results of smaller, reoccurring instances 

are obtained to solve the problem. 

 Greedy Technique: To solve the problem locally optimal decisions are 

made. 

 Back tracking: This method is based on the trial and error. 

 Specification of Algorithm: There are various ways to specify an algorithm 

 Using natural language: It is very simple to specify an algorithm using natural 

language 

For Example: Write an algorithm to perform addition of two numbers. 

Step1: Read the first number say a. 

Step2: Read the second number say b. 

Step3: Add the two numbers and store the result in a variable c. 

Step 4: Display the result. 

 Pseudo code: It is a combination of natural language and programming 

language 

Algorithm sum(a,b): 

// Addition of two numbers 

//Input: Two numbers a and b 

//Output: sum of numbers 

{ 

   c=a+b; 

   Write(c) 

} 

 Flowchart: Flowchart is a graphical representation of an algorithm 

Start/ Stop state: 

 

Transition:  

 

Processing or assignment statement:  

 

Conditional Statement:  



 
 

 Algorithm Verification: Algorithm verification means checking correctness of an 

algorithm that is to check whether the algorithm gives correct output in finite amount 

of time for a valid set of input. 

 

 Analysis of algorithm: The following factors should consider while analyzing an 

algorithm 

o Time Complexity: The amount of time taken by an algorithm to run. 

o Space Complexity: The amount of space taken by an algorithm to store 

variable. 

o Range of Input: The design of an algorithm should be such that it should 

handle the range of input. 

o Simplicity: Simplicity of an algorithm means generating sequence of 

instructions which are easy to understand. 

o Generality: Generality shows that sometimes it becomes easier to design an 

algorithm in more general way rather than designing it for particular set of 

input.(Example: GCD) 

 Implementation of Algorithm: The implementation of an algorithm is done by 

suitable programming language. 

 Testing a Program: Testing a program is an activity carried out to expose as many 

errors as possible and to correct them. 

There are two phases for testing a program: 

 Debugging 

 Profiling 

 Debugging is a technique in which a sample set of data is tested to see 

whether faulty results occur or not. If any faulty result occurs then those 

results are corrected. 

 But in Debugging technique only presence of error is pointed out. Any hidden 

error cannot be identified.  

 So, we cannot verify correctness of output on sample data. Hence, Profiling 

Concept is introduced. 



 Profiling or Performance Measurement is the process of executing a correct 

program on a sample set of data. Then the time and space required by the 

program to execute is measured. 

 

Pseudo Code for Expressing Algorithms: In computational theory, we distinguish 

between an algorithm and a program conventions used in writing a pseudo code. Pseudo code 

is a combination of natural language and programming language. 

Pseudo code is divided into two parts 

 Algorithm Heading which contains the keyword algorithm, name of 

algorithm, Parameters, Problem Description, Input and Output. 

Example: Algorithm name(p1,p2..pn) 

    // problem description 

   // Input  

 //Output 

 Comments begin with // and continuous until the end of line. 

 Algorithm Body which consists of logical body of the algorithm by 

making use of various programming constructs and assignment 

statement 

 Block of statements that are enclosed within „{ }‟ 

 Each statement is ended with delimiter „ ; ‟ 

 An identifier begins with a letter not by digit  and can contain 

combination of letters and numbers 

 Data types are not declared but we assume simple data types 

like int, float, char etc. 

 The compound data types are represented with node. If an 

instance of „P‟ is created to a node then the values of node can 

be accessed by using the operator ( . ) or   

Node = record 

{ 

Datatype1 Variable; 

Datatype2 Variable; 

} 

 Assignment of value to a variable is done using assignment 

statement 

Variable := Expression; 

Variable     Expression; 

 Logical operators such as AND, OR, NOT and Relational 

operators such as <,>,<=,>=,==,= are used to get a Boolean 

values true or false. 



 The array indices are stored within square brackets “[ ]”. The 

multidimensional arrays can also be used in algorithm. 

Example: A[i]- Single Dimensional Array, A[i,j]-2D Array 

 Loop statements like for, while, repeat until are represented as 

follows 

for i:=1 to n    

{ 

Statement 1; 

Statement 2; 

} 

    while (condition) do   repeat 

{     { 

Statement 1;    Statement 1; 

Statement 2;    Statement 2; 

}     } until (condition) 

 Conditional Statements such as if-then or if-then-else are 

represented as follows: 

if(condition) then  if(condition) then 

{    { 

Statement 1;   Statement 1; 

Statement 2;   Statement 2; 

}    } 

    else 

    { 

Statement 1; 

Statement 2; 

} 

 Input and output are represented by using read and write 

read (val); 

     write (stmt); 

Example 1:  Algorithm Max(A,n) 

  // A is an array of size n 

  { 

   Result:=A[1]; 

   for i:=2 to n do 

    if A[i]>Result then Result:=A[i]; 

   return Result; 

  } 

 



Example 2:  Algorithm even or odd (n) 

  // Finding whether given number is even or odd 

  { 

   if(n%2==0) 

    write(even); 

   else 

    write(odd); 

  } 

 

Example 3: Algorithm Selection Sort(a,n) 

  // Sort the array in Ascending order using selection sort 

  { 

for i:=1 to n do 

{  

j:=i; 

for k:=i+1 to n do 

{ 

 if(a[k]<a[j]) then j:=k; 

} 

t:=a[i]; 

a[i]:=a[j]; 

a[j]:=a[t]; 

} 

  } 

 

Example 4:  Algorithm Sort(a,n) 

  // Sort elements in ascending order 

  { 

   for i:=1 to n do 

   for j:=i+1 to n-1 do 

   { 

    if(a[i]>a[j]) then 

    { 

     temp:=a[i]; 

     a[i]:=a[j]; 

     a[j]:=temp; 

    } 

   } 

  } 

 

More Examples do it : Multiplication of two matrices, addition of two matrices, Fibonacci, 

factorial, GCD, reverse of a number etc discussed in running notes 

 



Recursive Algorithm: A recursive function is a function that is defined in terms of itself. 

Similarly, an algorithm is said to be recursive if the same algorithm is invoked in the body. 

An algorithm that calls itself is Direct Recursive. If it calls another algorithm then indirect 

recursive. 

Example:  Algorithm Towers of Hanoi (n,x,y,z) 

  // Move top n disks from tower x to tower y 

  { 

   if(n>=1) then 

   { 

    Towers of Hanoi(n-1,x,z,y); 

    write(“Top disk x to y”) 

    Towers of Hanoi (n-1,z,y,x); 

   } 

  } 

 

Example: Algorithm factorial(n) 

  // Factorial using recursion 

  { 

   if(n:=1) then 

    return 1; 

  else 

   return n*factorial(n-1); 

 } 

Example: Algorithm Perm (a,k,n) 

  {   

   if(k==n) then 

    write(a[1:n]); //output permutation 

   else     //a[k:n] has more than one permutation 

                        //generate this recursively 

            for i:=k to n do 

            { 

   t:=a[k]; 

   a[k]:=a[i]; 

   a[i]:=t; 

   Perm(a,k+1,n); 

   t:=a[k]; 

   a[k]:=a[i]; 

   a[i]:=t; 

            } 

 } 

 



Difference between Algorithm and Pseudo code: 

 Algorithm is a well defined sequence of steps that provide a solution for a given 

problem. 

 Pseudo code is one of the methods that can be used to represent an algorithm. 

 Algorithms can be written in natural Language. 

 Pseudo code is written in a format that is closely related to high level programming 

language structures 

 Pseudo code does not use specific programming language syntax and therefore could 

be understood by programmer‟s who are familiar with different programming 

language. 

 Transforming an algorithm presented in pseudo code to programming code could be 

much easier than converting an algorithm written in natural language. 

Performance Analysis: Algorithm evaluation can be done in two ways either before 

execution of a program or after execution of a program 

 Priori Estimate (Performance Analysis) - [before execution of a 

program] 

 Posteriori Estimate (Performance Measurement) - [after execution of a 

program] 

Efficiency of an algorithm can be done by measuring the performance of algorithm. 

Performance Analysis mainly deals with two factors 

 Space Complexity: The space complexity of an algorithm is the amount of memory it 

needs to run to completion. 

 Time Complexity: The Time complexity of an algorithm is the amount of computer 

time it needs to run to completion. 

Performance Analysis also deals with other factors like 

 Measuring Input Range 

 Measuring run time 

 Computing order of growth of an algorithm 

 Computing best case, worst case and average case. 

 

 Space Complexity: It is defined as amount of memory required by an algorithm to 

run. Two factors are used to compute space complexity  

 

 Fixed Part: Independent of input and output characteristics. It includes 

instruction space, Space for variables, Space for constants and so on. 

 

 Variable Part: It is also called as dynamic part that consists of space 

needed by variable whose size is dependent on problem instance at 

runtime. It includes Space needed by reference variables, Recursion 

stack space and so on. 



Let P be an algorithm, then total space required for algorithm is S(P)=C+Sp 

Where C is constant which is fixed space and Sp is variable space which varies 

depend on the problem 

When we analyze space complexity of an algorithm, we concentrate on estimating 

Sp(Variable Space)  

 Example: Algorithm sum(a,n) 

  //adding elements in array 

  { 

   s:=0; 

   for i:=1 to n 

    s:=s+a[i]; 

   return s; 

  } 

 

 

Space needed for this algorithm as follows: 

Sum variable„s‟    –  1 word 

Loop Variable „i‟  -  1 word  total size = n+3 words 

Size variable „n‟   –  1 word 

Array „a‟ values   –  n words 

 

Example: Algorithm Rsum(a,n): 

  // Addition of elements using recursion 

  { 

   if(n<=0) then return 0; 

   else 

    return Rsum(a,n)+a[n]; 

  } 

 

Space needed for this algorithm as follows: 

Return address (Rsum) -  1 word 

Pointer to „a‟ -   1 word  total size=3 words 

Local variable „n‟ -  1 word      total space=3(n+1) 

Depth of Recursion -  n+1 words 

 

 

 Time Complexity: The amount of time required by an algorithm to complete its 

execution. Two factors are used to compute time complexity. 

 Compile Time: Does not depend on instance characteristics 

 Run Time: Depend on particular problem instance 

Let P be an algorithm, then total time required for algorithm is T(P)=C+Tp, Where c 

is compile time and Tp is runtime 



Time depends on several other factors like 

 System Load 

 Number of programs that are running 

 Instruction set used 

 Speed of underlying hardware 

Because of these reasons the time complexity is calculated by using frequency count 

that is number of times each instruction is executed. 

One of the easiest methods to calculate time complexity is counting the number of 

steps. 

We can determine the number of steps needed by a program to solve a particular 

problem instance in one of two ways 

 In the First method, introduce a new variable count into the program. This is a 

global variable with initial value „0‟. 

 The Second method to determine the step count of an algorithm is to build a 

table in which we list the total number of steps contributed by each statement. 

Example: First Method  

Algorithm sum(a,n) 

  { 

   sum:=0; 

   count:=count+1; // Count is global, initially zero 

   for i:=1 to n  do 

   { 

    count:=count+1; // for for i:=1 to n(true condition)  

    sum:=sum+a[i]; 

    count:=count+1; // for assignment 

   } count:=count+1; // last time for (false condition) 

   return sum; 

   count:=count+1; // for return stmt   

 } 

Time complexity: inner loop – count=2n total 2n+3            frequency count: Ɵ(n) 

       Remaining – count=3  

 

Second Method  

StatementNum Statement Steps per execution Frequency Total steps 

1 

2 

3 

4 

5 

6 

7 

Algorithm sum(a,n) 

{ 

sum:=0; 

for i:=1 to n 

sum:=sum+a[i] 

return sum; 

} 

0 

0 

1 

1 

1 

1 

0 

- 

- 

1 

n+1 

n 

1 

- 

0 

0 

1 

n+1 

n 

1 

0 

Total Steps for algorithm                                                                                         2n+3 

 

Time complexity frequency count:  Ɵ(n) 



Examples: Matrix Addition: 2n
2
+2n+1    O(n

2
) , Matrix multiplication: 2n

3
+3n

2
+2n+1  O(n

3
) 

Algorithm Fibonacci (a,b,c,n) 

{ 

 a:=0; 

 b:=1; 

 write(a,b); 

 for i:=2 to n step 1 do 

 { 

  c:=a+b;  Time complexity: 5n-1       Frequency Count: O(n) 

  a:=b; 

  b:=c; 

  write(c); 

 } 

} 

 

First Method:  

Algorithm Rsum(a,n): 

// Addition of elements using recursion 

{ 

 count:=count+1; // for if condition 

if(n<=0) then 

count:=count+1; // for return stmt 

 return 0; 

 else 

 return Rsum(a,n)+a[n]; // for addition, function invocation and return 

} 

Time Complexity: 2(for n=0)+ TRsum(n-1) 

2+TRsum(n-1) => 2+2+TRsum(n-2) …….. n(2)+TRsum(0) => 2n+2  n>0 

 

Second Method:  

StatementNum Statement Steps per execution Frequency 

n=0      n>0 

Total steps 

n=0       n>0 

1 

2 

3 

4 

5 

6 

7 

Algorithm Rsum(a,n): 

{ 

  if(n<=0) then  

      return 0; 

else 

return Rsum(a,n)+a[n]; 

} 

 

0 

0 

1 

1 

0 

1+x 

0 

- 

- 

1 

1 

- 

0 

- 

- 

- 

1 

0 

- 

1 

- 

0 

0 

1 

1 

0 

0 

0 

0 

0 

1 

0 

0 

1+x 

0 

Total Steps for algorithm                                                                                               2         2+x 

 

T(n)= 2 for n=0 

T(n)=2+T(n-1) for n>0   => 2n+2 for (n>0)        Frequency count:  O(n) 

 



Asymptotic Notations: To choose the best algorithm, we need to check the efficiency of 

each algorithm. The efficiency can be measured by computing the space and time 

complexities. Commonly used asymptotic notations are: 

 Big O notation (Upper Bound) 

 Omega Notation (Lower Bound)  

 Theta Notation ( Tight Bound) 

By using these notations we can give time complexities as  

o Big O – Worst Case 

o Omega – Best Case 

o Theta – Average Case 

 Big O Notation: It is denoted by „O‟. It is a method of representing the upper bound 

of an algorithm that is worst case time complexity of an algorithm. 

Definition: A function Let f(n) and g(n) be two non-negative functions and Let n0,nc 

are two integers such that the value of input „n‟ is greater than n0(n>n0). Similarly „c‟ 

is a constant which must be greater than zero(c>0), then we define the function as 

follows 

   If f(n) ≤  c*g(n) then f(n)=O(g(n))) 

 

 
 Consider f(n)=2n+2, g(n)=n

2
 so that f(n) <  c*g(n) by using mathematical induction  

 Show that the time complexity of 3n
2
+4n-2 is O(n

2
) 

 Remaining problems see running notes 

 

 Big Omega Notation: It is denoted by Ώ. This notation is used to represent the lower 

bound of algorithm runtime that is best case time complexity. 

Definition: A function f(n) is said to be Ώ(g(n)) if f(n) is bounded below by some 

positive constant multiple of g(n) such that f(n)≥ c*g(n) 

        If f(n)≥ c*g(n)   then f(n)= Ώ(g(n)) 

 



Consider f(n)=2n
2
+5, g(n)=7n show that f(n)= Ώ(g(n)) 

 

 Theta Notation: It is denoted by Ɵ. By this method the running time is between 

upper bound and lower bound. 

Definition: Let f(n) and g(n) be two non-negative functions and consider two positive 

numbers c1 and c2 such that c1*g(n)<f(n)< c2*g(n) then f(n)=Ɵ(g(n)) 

 
 Consider two functions f(n)=2n+2, g(n)=n find the value of c1 and c2 

 Find the theta notation for following function f(n)=3n
2
+5n+2 , g(n)=n

2 

 
 Little o notation: if f(n)=O(g(n))) and f(n)≠Ɵ(g(n)) then f(n)=o(g(n)) 

 Little Omega notation: if f(n)= Ώ(g(n))and f(n)≠Ɵ(g(n))  then f(n)=ω(g(n)) 

Practical Complexities: 

 Time complexity of an algorithm is generally some function of the instance 

characteristics.  

 This function is very useful in determining how the time requirements vary as the 

instance characteristics change.  

 The complexity function can also be used to compare two algorithms P and Q that 

perform the same task.  

 Assume that algorithm P has complexity Ɵ(n) and algorithm Q has complexity Ɵ(n
2
). 

We can assert that algorithm P is faster than algorithm Q for sufficiently large n by 

seeing polynomial of high degree. 

  How the various functions grow with „n‟. See the below table and figure. 

  
 By seeing the above figure we can say that the function 2

n
 grows very rapidly with n. 



Amortized Analysis:  

 Amortized Analysis means finding average running time per operation over a worst 

case sequence of operations.  

 An Amortized analysis indicates that average cost of a single operation is small if 

average of sequence of operations is obtained.  

 There is a difference between amortized and average case analysis. In average case 

analysis, averaging over all possible inputs but in amortized analysis, averaging over a 

sequence of operations. 

 Suppose that a sequence of operations I1, I2, D1, I3, I4, I5, I6, D2, I7 of insert and 

delete operations are performed on set. Assume the actual cost of each seven inserts 

takes 1 unit of time and delete operations D1 and D2 takes 8 and 10 respectively. 

Total Actual Cost=7+8+10=25 

 In amortization scheme, charge some actual cost of operations to other operations. 

This reduces cost of one operation and reduces cost of other operations. 

 If we charge cost of one unit for each insertion (I1 to I6) from delete operation then 

D1=6, D2=6. 

 The two units of D1 is transferred to I1, I2 that is I1=2, I2=2 and 4 units of D2 is 

transferred that is I3=2, I4=2, I5=2, I6=2, lastly I7=1. 

 Total Amortized Cost of I1, I2, D1, I3, I4, I5, I6, D2, I7 = 2+2+6+2+2+2+2++6+1=25 

that is amortized cost equal to actual cost. In general amortized cost greater than or 

equal to sum of their actual cost 

 There are three commonly used techniques used in amortized analysis: 

 Aggregate Analysis 

 Accounting Method 

 Potential Method 

 Aggregate Analysis: It is similar to average case analysis but we consider the 

average for worst case sequence. 

In aggregate analysis, if sequence of „n‟ operations takes worst case time T(n) 

in total. In that worst case, the average cost or amortized cost per operation is T(n)/n 

Amortized cost > Actual cost 

Potential function p(i)=Amortization cost (i) – Actual cost(i) + p(i-1) 

 P(n) - P(0) > 0 

 Example 1: In Jan, you buy a new car from a dealer who offers you the following 

maintenance contract $50 each month other than March, June, September and December, 

$100 every March, June and September and $200 every December. 

Worst Case Method: $50- Jan,Feb,Apr,May,Jul,Aug,Oct,Nov 

            $100- Mar,Jun,Sep 

            $200- Dec 

Aggregate Method: To use aggregate method for amortized complexity, we first determine 

an upper bound on the sum of the costs for the first „n‟ months. As tight a bound as is 

possible is desired. 

 The sum of the actual monthly costs of the contract for the first „n‟ months is 

(50*8)+(100*3)+(200)=400+300+200=900/12=75 



MONTH 1 2 3 4 5 6 7 8 9 10 11 12 

Actual Cost 50 50 100 50 50 100 50 50 100 50 50 200 

Amortized Cost 75 75 75 75 75 75 75 75 75 75 75 75 

P(i) 25 50 25 50 75 50 75 100 75 100 125 0 

 

Example 2: Implementing Stacks on Array 

Two fundamental operations takes O(1) time – (push, pop) Since each of these 

operations runs in O(1) time. The total cost of a sequence „n‟ push and pop operation is O(n). 

Now, we add other operation MULTIPOP(S, K) which remove K top objects of stack 

S. 

MULTIPOP(S, K) 

  While not STACK = EMPTY(S) and K>0 

 pop(S) 

K=K-1 

Average Cost of an operation is O(n)/n = O(1). Therefore, all three stack operations have an 

amortized cost O(1). 

 Accounting Method: Accounting method is performed based on the charges that we 

are assigning to the operation. The idea of accounting method as follows: 

 Assign different charges to different operations. 

 Amount of charge is called amortized cost. 

 There will be actual cost which will define the nature of the algorithm. 

 Amortization cost can be less than or greater than actual cost. 

 When it is greater than actual cost, the difference is saved in an object called 

credit 

 If it is less than actual cost, the stored credits are used. 

 In Accounting method, amortized cost = actual cost + credit. 

   Example 1: 

MONTH 1 2 3 4 5 6 7 8 9 10 11 12 

Actual Cost 50 50 100 50 50 100 50 50 100 50 50 200 

Amortized Cost 70 70 70 70 70 70 70 70 70 70 70 70 

P(i) 20 40 10 30 50 20 40 60 30 50 70 -60 

 

p(i)=Amortization cost (i) – Actual cost(i) + p(i-1) 

 P(n) - P(0) > 0 

P(i)=-60<0 , condition failed 

Invalid Amortization Cost (70). Again assume amortized cost as 80 and do the calculation 

 

Example 2: Implementing Stacks on Array 

 Consider Push and pop operation 

 Push: top=max-1   pop: item=a[top]  

  top++                   top-- 

  a[top]=item 

Let the actual cost required to perform either push or pop operation is 1. Let us assume 

amortization cost push=2 and pop=0 then 



 For push:  Credit= Amortization cost – Actual cost 

            =2-1 = 1 

For pop:  Credit= Amortization cost – Actual cost 

            =0-1 = -1 

 

 Potential Method: This method is similar to accounting method in which the concept 

the prepay is used. In this method there will be no credit but there will be some 

potential difference or energy which can be used to pay for future operations. Instead 

of associating potential with specific object, it is associated with whole data structure. 

Working of Potential Method: Let D0 be the initial data structure for „n‟ operations. 

We have data structure D0 to Dn and then actual cost has C1…Cn. Potential function is 

denoted by Ø then 

    Amortization cost = actual cost + potential difference 

  n n 

  ∑ Ci
|
= ∑ Ci+[Ø(Dn) – Ø(D0)] 

  i=1 i=1  

Example: Consider a stack of size „S‟ then initial charge be „S‟. 

 if a push operation is performed on stack then the potential function  

Ø(Dn) = S+1 

 If a pop operation is perform on stack then potential function Ø(Dn) = S-1 

 Potential difference for push operation is Ø(Dn) - Ø(D0) =S+1-S = 1 

 Potential difference for pop operation is Ø(Dn) - Ø(D0) =S-1-S = -1 

 Amortization cost for push and pop is 

Amortization cost = actual cost + potential difference 

       = 1+1 = 2 

Amortization cost = actual cost + potential difference 

       = 1-1 = 0 

 Example: Amortized cost = actual cost + P(1)-P(0) = 50+25-0=75 

          = actual cost + P(2)-P(1) = 50+50-25=75 

         = actual cost + P(3)-P(2) = 100+25-50=75 

      : 

      : 

      : 

       Calculate all costs (Maintenance car) 

 

 Note: Amortized analysis is used for algorithms where an occasional operation is very 

slow but most of the other operations are faster.  

In Amortized analysis, we analyze a sequence of operations and guarantee a 

worst case average time which is lower than the worst case time of a particular 

expensive operation. 

 

 

 



Performance Measurement: 

 Performance evaluation can be done in two ways. Before the execution of a program 

called Performance Analysis and after the execution of a program called Performance 

Measurement. 

 Performance Measurement is concerned with obtaining the space and time 

requirements of a particular algorithm.  

 These quantities depend on the compiler and options used as well as on a computer on 

which the algorithm is run. 

 To obtain computing or run time of a program we need clocking procedure that 

returns the current time in milliseconds. 

 Time complexity can be calculated with the help of any programming language like 

C, C++, Java and Python. 

 In C language, the time events are stores in standard library #include<time.h> and use 

GetTime() to get current time in milliseconds. 

 In Java language, the time events are stores in package java.util.Date and use 

getTime() to get current time in milliseconds. 

 In Python language, the time events are stores in package time and use time.time() to 

get current time in milliseconds. 

 Performance Measurement can be calculated by subtracting start time from current 

time that is performance measurement=current time - start time  

 Suppose we wish to measure the worst case performance of the sequential search 

algorithm. First, we need to decide the values of n for which the times are to be 

obtained and then determine for each of the above values of n, the data that exhibit the 

worst case behavior. 

Algorithm SeqSearch(a,x,n) 

{ 

 i:=n; 

 a[0]:=x; 

 while(a[i]!=x) do  

  i:=i-1; 

 return i; 

} 

 In the worst case, to search for x, given the size n of a. An asymptotic analysis reveals 

that this time is ϴ(n). So, we expect a plot of the times to be a straight line. 

 To measure the computing time of this algorithm we need to write a TimeSeqSearch 

algorithm, in that GetTime() is used to get the current time and start time of algorithm 

in milliseconds. 

 Finally, performance measurement of an algorithm can be done in milliseconds. 

Algorithm TimeSeqSearch(a,x,n) 

{ 

 h:=GetTime(); 

i:=n; 

 a[0]:=x; 



 while(a[i]!=x) do  

  i:=i-1; 

 return i; 

 h1:=GetTime(); 

 t:=h1-h; 

 write(t); 

} 

 Now we are writing an algorithm to measure the time in milliseconds for „n‟ different 

values. 

Algorithm TimeSearch() 

{ 

 for j:=1 to 1000 do 

 { 

  a[j]:=j; 

 } 

 for j:=1 to 10 do 

 { 

  n[j]:=10*(j-1); 

  n[j+10]:=100*j; 

 } 

 for j:=1 to 20 do 

 { 

  h:=GetTime(); 

  k:=SeqSearch(a,0,n[j]); 

  h1:=GetTime(); 

  t:=h1-h; 

  write(n[j],t); 

  } 

 } 

 Timing results of above algorithm in milliseconds are 

 
 The times obtained are too small to be of any use to us. Most of the times are zero, 

this indicates that precision of our clock is inadequate. The nonzero times are just 

noise and are not representative of the time taken. 



 To time a short event, it is necessary to repeat it several times and divide the total time 

for the event by the number of repetitions 

Algorithm TimeSearch() 

{ 

 // Repetition factors 

r[21]:={0, 200000, 200000, 150000, 100000, 100000, 100000, 50000, 

50000, 50000, 50000, 50000, 50000, 50000, 50000, 50000, 50000, 

25000, 25000, 25000, 25000} 

 for j:=1 to 1000 do 

 { 

  a[j]:=j; 

 } 

 for j:=1 to 10 do 

 { 

  n[j]:=10*(j-1); 

  n[j+10]:=100*j; 

 } 

 for j:=1 to 20 do 

 { 

  h:=GetTime(); 

  for i:=1 to r[j]do 

  { 

   k:=SeqSearch(a,0,n[j]); 

} 

  h1:=GetTime(); 

  t1:=h1-h; 

  t:=t1; 

  t:=t/r[j]; 

  write(n[j],t1,t); 

 } 

} 

 Timing results and graph of above algorithm in milliseconds are 
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