\Lkl\T-T_ CONUENTIONAL SOFTLOH_EE MANA EMeNT

— = —

—

= The best thing about the Softwave is its flexibility: 2t
Con be pyogrammed 1o do almost @anything:
— The wovst thing obout the Softwave is also its Flexislity
"The olmost onything" Chavactevstic has made it difficult
1o Plan, monitoY « and Contypl Softwave deuelopment.

= In the mid-199ps, ot least three impovtant onalyses
of the Stote of the Softwave Engineering industry weve
Peyformed.-

= AWl thvee onalyses veached the Same 9eneval concluSion

The Sucess vate for Softwave Pvoject -is uevy [ow-

They can e Summai3ed A3 follows:

% Softweie development S SELL highly onpved{ctabte-onlg
obouwt 10¢+ 0f Software projects Ave deliveved Success
~fully within ivitial budget and Schedule estimates.

x Monogement discipline is mpve of Q diseviminatoy in
success oy fatlwe than ove technslogy advances .

% The level 0% softwave ScraP ond Yework 1S indiCative
0f an Tmmoture PYoCesS

The waterfall Model*

= In Softwove €ngineering -the Loatev fall model is Conventional
Wioare development Process and Tt treated AaS benchmark
Of +hat Process. ‘

- In 1930, mYy father . winston RoYCe , Presented o papey
titled * Manaqing -the Deuelopment of (ovge Scale Softuon
systems™ ot TeEE WESCON:

The waterfoll mpdel mode thvee Pyimavy points:
% Theve owe oo essential Steps Common -t the development
Of o Computey PYOgrams oxe onalysis and Coding

J’f’fffj;{]
]_de?ngl

% T0 contvol inellectual freedom assotioted with Softwave

development , we intyoduce System yequivements, Softwaye
Yequivement s Proqram design ond testing-

* The bosic fvomewoyk tn the watevfall mModel isﬁskj and

muites failue.

,‘

The following diagvam ghows walmfall model Profile ond
the basic steps.

The lavge- scale System opProach.

| System

yequivements \
o L \
K’ - Softoove

UEQuwementsl \
o/

=
__, Hnalgsf 5;—\

n
\- PfOﬂYamd Q&QQJ
)

~ EO#?*'%J*\
/\k
K]o p evaﬁons@

The fiue NeceSsary impyovements for this APPOACho woovk

- complete Progiam desSign before analysis and cading
2- Maivtain cuyyent and complete decuwventation-

3- Do the job twice, if Possible.

L Plan, Contvol « and mMoriitor festing |

S- 2nuolve The customey.

Progtom de&gr\ Comes newst we Should take-yp PYel'mlﬂOng

ogram desiqn as-the first step even pedire the Yequivements
and analysis Phoges.

o At s PEint Hhe Brmayaw | Aeansy. aRUNER Flhaat OmBL e » o

« When we PeYforming analysis asthe next Phase, the program
designer analyie Opevational conStraints and senses the
consequences -

« Due_to the eavly Progromdesign phase we Shoud €asily under-
stand the dotal YeSowrces allocated tothe Poject ave inSufficie
developing Opevational desiqn is ¥ight or wrong OrEtC--

+ we implement the Cavly pYogram design by Followthe ollowig
Pints.

o) Start the desiqn

onalysts oy POJammers.
allocate dato PYocessing mopdes even

Pyocess oith Program degigney not with

b) Desiqn define, and
ot being wvong. Rllocate Processing functions, design D8.

Allocote execution Tme. define interfoces and oPerating
System, describe put and output Process, detine preliminay

opeYating Proce duyes -

d) (ovite Oan Oderuview document that s tnderstandable,
informative, ond Cuyvent SO that euewy tovkey on the pProject
can qain and Clemental anderstonding of the dystem-

2) Docunent the cLeSiaq'.- we knowthat document design is
yequived Q@ lot for bSOthwme Progvams-
« The Progvammers, analysts. designers e mostly depending
on documentation 10 finish thely woovk.

o) The Softwave designers Communicate with interfacing -

b) During eaxly -Phases documentation i3 the desiqn.
&) The \alue of documentation s o SuPPt latey

Modificat ion s by Sepavate test team, Sepeyate Mointenance
teom and Opevational PevSonne Who are not Software
it evade.

3 Bo it twice:- The Software deliveved 1o the customey Loy

OPevational PuvPose 1S actually the Second \UeySion . oiftey Conge-
—vqu cntical desrgn ond opevational isues.

« T fivst Uession of Softwave development, the team howle o
SPectal bood Competence toheve they Can Quicld\f Sense +Houble

SPots in the design, model them . model o lternatives .
) Plan, Contvoland - monitoy testing = The Combination of

Man Powey, Computer time and management 18 called test Phose.
This Phase hasS 9veater Yisk intems of Cost ang Schedyle.

The following ave the importont Things in the test phase

o) employ o teoam of test Specialists who weve not YeSponsiple
for the oOvginal design

b) Employ \Jnsual inspections o sPot the Obuious evoss (ke
doPPed mMinus, missing Factys of 0 jumps O LYONg address

Q) Test every ogic Poth.

d) Employ the final Checkout On —+the Tovget Computey.

5) Tnuplve the Customer :

Some times Software ‘desiqn going o ide intey Pretotion s
elen ofter Previous agveement- So it i ‘mpovtant 10 inuohe
the customey in 0 foymal way 3o that he has Commited
himse(+ at cavlier Points befove Hinal delivery.

. TnSight: judgment Ond Commitment of & customer Can

boost the Project develoPment Pypcess: Tt may done ot

preliminary Softwore veuiew following the preliminary

Progam design Stef. Sequence of final Softwae alceptonce

Ye \diew:

. Most veuiew meetings has low €ngineeving dalue s and
high cost in teyms of oyt ond Schedule inuolued in
thely Prefuation ond conduct:

Conuentional Spftware Monagement Pevtoymance

Bhoom describes the Objective chavactevization 0F

Boomj
the metyics desoribe

atate of Softwave deuelopment Mony of

Pundomental Economic velationships that vesulted tvom
conventional Softwave Process Pacticed ouey the |ong Peviod-

A w“indinq and fixing & Softwave Prohlem oftey de\?vevtj
Cost 100 times more than finding ond fixing the problem
in Bovly design Phases.

2. Yow can Compress Soffwave development Schedules 2s./.

3. Foy euery One yuPee we Spend ON dene(opment 1 we wi(r
SPend two yupeey ON mainten ence .-

. Softwave development dnd maintenance Costs ove Primavily
o function of the number of Souvce lines of code.

. Joviations Gmonq People account fov the biqgest difterences
in Softwaye Pyoductiuity.

6. The ouveyall vatio Of Qpftudve 1o had ware Costs is Still

Jrowing- In 9ss it was 15389 in 198s, 85415

F Only obout 15l 0f Software development etfort is

deuoted 10 Pyoqamming -

g Softwave Systems oand oyoducts tyPically cost 3 times

08 much pey Stoc as individual softuwave Programs.

30fwAYe - System Products CoSt qtimes @S much:

q- otk thyoughs Catch 6ol of the €VoYS:

o 80+ 0f the Contyibution Comes fyom 90+ ofthe Contribuo

¢ 20+ 0f the €ngineexing s ConSumed by 20°[0f Yequivermend
2 80/ 0% the Sottwave Cost 1S ConSumed by 90°|- 0 Comporert,
£ 20°| of the &nwors ove coused by 20°[o€ the components .

% 20 0f4he Software SOAP and vework is caused by 20°[
of the &wors

£ 8p+(. of the veSpwices ove consumed by 20°/ 0f the Components

v oo the enqineeying s accomPlished by 20°1- 0 Fthe

Softwave Economics -

The Most Softwave CoSt medels Can be abstocted i g

function of five basic Povameters: Size, PYocess, Peysonnel
enuiYonment , and Yequived quality.

I The %3e of end pPYoduct » which is tLjP{ca(ltj Quontitied - in
teyms 0f the Numbey 0f 2ource mstyuctions oy +he Numbey
of function Points Yequived o develop the yequived wﬂunctional‘rty.

2. The PvoteSs wused 40 Pvoduce <the €nd PYoduct) 1N Pevticuloy
The 0bility of the Process fo auoid non-uafye -adding
OCtidities.

3 The cambilites of Softwore Enq?neeﬁnq PevSonne(, and

Porticularly theiy experience with the Compuey Science 1ssues
and the OPplications domdin isSues OF the Prpject.

Q- The enuYonment, which is Mmode up of the ool gnd Techniques
available 10 Support Cfficient Soduwave derle|

oPment and +p
automate the Process.

5 The vequived quality of the Pvoduct including its featuves,
Pexfoymance, Yeliability ond adaptabil?t\j.

The Yeleation Ships among these Pavameteys and <the eStimated
oSt Can be wryitten as follows:

gffovt = (PevSormet) (enuivonment) LQLLal?ttD Lsiigrocess) ‘,

Taqet Objective: ImProued RoT

i - » 1
a - | /*ﬂ
//_/ |) ~ 5,

Cocx
N\
\\
%
i
2
n

Software Sire

n
- 19603 - (Q70S |1 ~19%0S - 19905 | 72000 and on
- watevfall model - PYocess impovement &5 Itevative dQ\I(’JDPmQY\t
- functiona| design - Encapsulation- based| | |- component - baseq

- Diseconomy OF tale | |- Du’seconomq ot - Retuyn pn °m\1€Stme.#
L Scale- |

—

COWQSPonding en\l‘wdnmgnt, 3128« Gnd PYOCQSS technologies

|
conlentional | Transition | Modeyn Pactices.
Enuivonments [tools: | [Envivonmertsftopls . |, [Envivonmerts Tools:
Custom | Off—the-shell, Sepevatef [OFF-Tthe-shelt, inteqvated
- — 1] e | size:
Site: ; 30-/- Comporent | | S1EE,
~\00°l custom| | 3ol custom || O0h Componeat
Process: | Process: | PYocess:
] fid hoc R Re peatable - ‘, Mavnaqed (Heasuyed
f)
Typrcal Project Pevformance {
Predictably bad! unpyedictable - | PYediCtable
Always. - An$yequently: - usually:
over budqet - On hudqet - On budget

Oley schedule On Chedule OV SChedule.

" = -

To vePresents the life cycle of the Softwave business engaged
in by the OYganization The three 9enevations of Softuwave

develoPment axe defined as follows:

I condentionals 3n 19608 ond 1930, AAFtmansShip. OYganiation
Used Custom tools, Custom Processes, and \ivtually all Custom

comPonents built in Primitive lanquoges.

2. Tronswion. In 1qeo3 and Q9ps, Softwave an\neeﬂngc OYgan;-
ttiony USed More- Yepeatable Pypcesses Gnd OFf-the Shelf
tools, ond mostly (5ro--) custom ComPonents built in
highey eyl \quuacjgg.

3. Modeyn Pyactices- 1n 2000 and latey, Sofwave Pyoduction.
This book's PhiloSophy is vooted inthe use of Managed

Gnd mensuved PYoce Sses, inteqrated Automatipn Enivonments

and 'W.\ostl\i (F0-1) 0ff-the-shet Components-
Acheding Rot acyess aline of buSiness -

st
SYystem

Second

System Nith System

-

™oces s ond envionment foyvatl
L line - 0F - huSiness Systamg: :

/_——\M"
g SO&(}OO\YQ

3,\ ,,//, Q O I
\\ ~

fAcheuing Rol acvoss o Project with Hultiple itevations.

- [matwve iteative precessiand | oy oy oo pe [N
—Process automation iexation. | texation

/ soﬁwme)
\ Rox

4 e v

Project life cycle: succesSive Meyations.

[Investment in Yobust architecluse fiy skt ééc_ond | . I
|{€YOUDI\‘

Acheving Rol acvosy a life cycle of Product .velea,seg; g

[investviert i Product avchitectwe fivst | second

\We-cycle velease Proces
Stand | Yelease | velease
PYOCess automation - .

NThye lease

Product (ife ¢ycle: Successivie Relens -
PROGANATIC SOFTWARE COST ESTIMATION -
Jone cvitical Problem Tn Softwae Ccost estimation 1S 0L l0Ck OF

we\l - documentotial -
sTheve hove been many 1ong - Standing debates - Omong developes

ond \endoyS 04 Soft wave Cost Estimation models and tools:
The geneval accuvacy of conuentional Cost model (sqcms COCoﬁo)

LY

X 1P -Vamm Ao " 2 Y Vs e a ~

. ey . Y

,>Thts on in'texesﬁm] Phenomenon 10 be Congidered tohen
Stheduling labot- intensive ¢ffovts

Sofiwate monager, \\ ot MuSLCost $X
Sftwave achitectuve o ‘:‘Of\? business:
manoqeY » Softtoare ! q 0 Lo Tne
development manager, d %

Softuave Assessment , — :

77 [Costmodeley L |
© YHeve'show
Justiey that

T

Costestimoe Cost
RiSKS 1 pPtions, |

ode ot s, J

atteynatives:

y Mpst veal toovd USe 0? Costmodels is bottom.op vather than
ToP- down -

_yThe Softuoe Project manaqev defines the farget cost of the
Sofoare 1 then manipulates the fovometeys ond $izing unti W the
tovget Cost can be justifed.

59t s absolutely necessany 40 analyze the costisks and understands
the Sensitivites and tyade-offs Objectively.

e Gtis oaccepted by aul Stoke holdeys a8 ambitious butyealize.
. Tt1s bosed on o well-defined Software Cost model Withabosis

. %113 based Ona database of velevant Project experience that
includes Similoy Process, Similay w‘echnologies n%fmilaYCZualttﬁ
yequivments and Similay People.

P .

b g Prmed o pantiabh Aetnil eathat T Keu yIsK QyeoR

&
Tmeroving Softwave Economics «-
The €conomics of Sobkwave development have been not only

difficult 1o achehle but also difficult o measwe and ubStaine.

The five basic Paometeys 0F the Software cost model is.

I+ Reducing the Size OV Complexity
9. Tmpvouing the development Process

3. Using wore- skiled pey Sonnel end better teams

L using loette endiyonments.
5. Gvading ot ar bocking ofF o qua ity threshold's.

ReduCing the Softwaye Pyoduct Sige +-

The most Significont way To imPvoue affovdability ond Yetum

=3
On fnlestment (RoV) 18 uSually to Produce a pyoduct that,
achieves the design goals with the minimum amout 0f

human—ﬂﬁnemted Souxce mateyial-

5To Yeduce the Softwave Pypduct Siter the developeys may
follow Component bosSed develoPment model, Object ofierted

technology, Automotic Code 9enevaters and So many fools.

S The use of high leve(lomquages Suthas Taa, «Net,

\iSual Basic For Softwave development focused on 4ew
lines 0f humons 9enevalid Souyce cade.

"LOMC}\UX%CS'-
70 E€stimate how much humans Cjenemted cpde 1S Yeduced

1o decyeose The Softoave Project St o the Onivevsal function
Points {UFR) ave useful gstimotors fov language - independent;

LANGUAGE Sloc PER LFP
Assembly 320
C 128
FORTRAN T DS
copoL &S q
Ada 83 T
ctt 36
Adaqs o
Jaa =5
Jisual Basic 3S

gach lanquoge has a domain of usage- \isual Bast s \tevy
gxpressive Ond Powerful in building Simple intevactive aPplicetion,

Two intevesting Obzevuations within the data Concewn the
dibferences ond Yelationships betuen fida g3 Gnd Ada qs and
between € ond C++-

Ada &3 wos due in Pt o the increase it would ProVide in
€ xPresSivenesSs.

Ada 95 Yepesented @ well- Plamned lonquage vpgrade o

cost Model Pavameteys - J_TYGE ds
Site Higher ovdey lanquages (¢, ¢+,
Abstyaction and comPonent. RdaQqs: Java)
based developPment ?ijesd oviented
eusSe
technologies -

Commevesal components

!
Process i ;
Ttevotive develppment

Methods and techniques Process maturity models
AyChitectwe - fivst development
Acquisition Ye Loy .
PevSonne) Teat
Yaining ond eySonne |
e e
P OPle '?O\C{DYS SKi dQVQ(OPqu&
Team ooy k
tWin-din Cultuves .
Enuiyonment .
a ’ ; teqvated o ols
Rutomation technologies OPen Systems
and -fopls Hovd oave Platfoym Pey£ovmange
Automation of Coding documers
testing ANalyses.
Quality |
Peyformance, Yeliability, Hoxd Loave. Platfotm petfomonce
OCCUYACY Demonstyation- based
ASS eSsSment

Ada lanquage ave numevous Sopftwave Engineering technology

Qduance s, including lanquage -enforced configuation control,
Sepevation 0Ff intevface and imeplementation, avchitectural Contyol
Primitides . encaPSulation, Concunvency suppoit. ond Many othevs.

The one 0% the *‘Fouow?nq Progvam siteS would be Yequiveq

1,000,000 lines 0f 0SSembly lanquage
Hooiooo lines 0Of C

220,000 (ines of Ada 3

11S,000 lines 0of Ado QS oY Ctt-

Object - Oviented Methods and \isual Hodeling:-

—y fn. Object- Oriented modet of the PYoblem ond 1tS Solubion

encouyages v Common uocabulory between the end users ofa
System and its develoPers, thus cveating a Shaved tnderStanding

0% the Problem being Solled.

- the use 0of Continuou s inteqyation Cveates OPPAVturities
t0 Yecognize visk €avly ond moake crementol Coyveckions
without destabilitfnq the €ntive development e&Epyt.

- An Object OViented avehitectuve Provides -ou Cleay Sepavation 0%

Concemns Gmong disPavate elements of O System , eveating Fivewals

that Prevent o Change in one Rt 0f the System f£vom Yending
the fabric 0f +the entive ovchitectuye.

@
Booch also Summovized 4ive Chayactevistics 0% o Sucesséy

Object- Oviented PYoject

- B yuthless focus on the development 0% o System that

Prodides o el undevStood Collection of €8Sential Minimal
chavactevistics .

= The existence of o Cultuve that is Centeved on Ye,su\ts.gncom%

Commumc_at{on, and Yet 1S not afvaid 1o fail .

- The effective use of Object - oviented modeling

= The Cxistence ot o Stvong aYch?tectuYa(Ufoon.

- The arplication of o well: manoged

itevative ond nCementg)
deweloPment ife cycle

Reuse

Re using existing ComPonents 0Nd building Yeusable Compyag
have been natuwal $0Hun¥e Engineering activites since the eowliest
impyolements in PYOgammMing lanquoges -

Softwone design methods hade lways degt imp)

iGitly tov, Yeuse
in ovdey o minimize development COSES (Ohile o

cheiu‘inq all the
otheyS Yequived atty; butes of P%eovmance, feortuveset, ong Quality. |

tectuves, Commpn Pr0cesses, Pyecedont ExXPerience,
ond COmmon Cnivoynments owe q(nstances o4 YeUSe.

commoen OvCh

Most +Yu\t1 Yeuoshle COmPOﬂQﬂtS 0L Uallio AVe dvmecsie .

The\j hove on economic mptivation fov Continued Suppeyt.

Theq toke Owneyhip OF 'umPYoxr‘inq Pyoduct Quadity, add‘inq |
new features, and tTyansitioning to New 4echnplogies
They have oo Sufficiently byoad Customey bose 1o Profitape.

The cost of developing O YeuSoble Component 'SNot N

The steep initial curue illustvotes the eConomic Obstacie
1o deueloping YeusSable Components- At IS ditficult 10 develep

0 Conincing business Cose foy develoPment Onlesy +he
Objective 130 SutPat Yeuse QYOS ANy Projecs.

Cost ond Schedule nestments necessay 10

ocheive Yeusable components:

®
CoMmmexcial Components :-

The use of commeyeial

AS & means p¢ veducmg Custom development |3t has not
PYouen +p pe Straight fowayd Sn Practice.

The aduantaqeg oand dis O\d\[aﬂtaﬂes 0f qunq Commeyiq
Component s -

| Disfd\antoge
ApProch Aduantages e
COW\W\QYC\’Ql PY ed.lCtﬂb\e “CQY)SG .?W—quent UPClYQdQS
Costs UP-Fvont [cense fees
ComPonents
3 Yoadly used, matue Recuning mainterancefes
technoloqy

Dependency on \em
Huailoble Now Run-time eficiency
Dedicated Support OYqani3gtion —Fun(}t'\onant\j
Hovdewove | Sobtuae independee nteqvation not
Rich in functionality. Alays tivial
No contypl Ouer pp
Irades gng Havtovence

Unnecessavxj teatuves thal

Consume extyg Y&OUYCes
Otten Inadequat e

Yehabi ity ang oty
Hultifle- v

COmPonents i Cevtainly desivaplp

CNdOY TN Chmmnds L
e, » ComPatil

-

custom Complete Change ExPensive, onpvedics
dexelopment fyeedom table develppment
Smalley, often unpredictable dafs
Stmpley implemertations yndeLined Maintenane
OHten bettey perfpimace ™M0del

Contyol of development Often immatuve

and +vagile
and enhance ment Single- Platfyrm

de pend ency
Dvafn on ewpert
YeSouyces -

Improuing Softoave Processes -

for +he ftwove -Oviented OYqanizations, theve ove mony
ProcesseS Ond SubProcesses: T use thiee distinet Process.

« Meto Process -+ AN Ovganitation's Policies, Proeduves, ang

Practices fov Pursuing o Softwave- Sntensive |ine 08 buSie

+ MacvoPyocess: A Project's Policies, Pvoceduves, and Pyactices

for PYoductng O Compiete Softume Product within . certain
costi SChedule nd qQuality constvants -

« Micvo Process . A Project Team's Policies, Proceduves, énd
Practices for acheving an artifoct Of the Spftwove Prowss.

The Thvee levels 0% Pyocess and thety attyibutes.

_Atbributes MetaProreSs MACRD Protess MicRoPoGesS
Subject lineof business Project Ttevation ﬂ
Objectives Line 08 business Project Profitalility Resource
b RiSk Monagement | (AN0gement
Pvofitability \ , ‘
‘ RTSK yesolution
Compet i fiveness Project budget o
Schedule, Quality T \@Stone budget
Schedul@,qual &3
Audience -Acquistion authori SOY‘thYG Project Subrojectrarngas
ties) Customer s Managers
Ovqanizational oftwave goﬁwme&\q e
Management ?J\C}MQBYS
Project, Pvedict- OV budget, on on budget, on
Metrics ability Retene, Schedule e
mavket Shave Majoy milegtne | ONOY MileSme
Suess Release | Tteyation
Project SCvapand Serop and
] YCuaork- ! YELIOVK -
Concems, Bueauaaey s Buality Usfman Content \is
Standaydization Cial Performance SCh@dCLIG.
Time Scales 61012 Honths 410 6months.

4 foranyYeay S

IMPROVING TEAM EFFCTIVENESS

To impyone the teom e8fiveness the teamuovk 18 much
move important Than the Sum of individuals:

The teom management Wnclude the %Llowing

« A well- managed PYoject Coan Sutted toith o Noming|
Enqi neeYing teom .

A mig Manoged Project will almost never Suceceed, even With an
ExPert team 0% engineeys.

+H wel axCritected 3ystew Can be built by & Nominal teom
OF softuve buildeys.

- R Poorly avchitected SyStem woitl FHoundey even with an expeyt
team oF builders.

The following five Stafing Princeles ove-
I The pyinciple of foPtalent: use bettev and fever People.

2. The Principle OF Jobmatching. it the taske othe SKills ond
motivation of the Pepple onailoble-

3. The Principle of cawey Pypqression: An ovqanitation does best

'n the long yun by helping its People 1o self- actualize

4 The Principle 0% -eamloalance - Select PeoPle tdho taill Complemen

p‘Y\A LI\.[@ s B =

St
5- The Pyinciple of Phase out: Keeping O misfit ON the “eam

Ond deesn't benefit anyone.

The #ot\ow?viq ave Some Crucial attybutes 0f Sucessfu
Softwove Pyoject managers that desevve much morve attention.

Hiﬂmﬂ 3Kills - Fety deciSions ave 0% TmPrtant QS hmng
decisions. Placing the Yignt PerSon in the vight fob Seems
Obuious but s Swprisingly havd o achieue.

Customey- nteyface SKiLl- R\lo‘fdfng adveysayial veleationShips
ampng Stake- holdeys TS o pyevequistte oy Sucess.

Decision Haking kL= The jillion bppks written about mangement
hode fosled o Provide a cleay definition of this attvipug

we all know o 9vod leodey wohen we yunito one, ond.
dec?sfov\»mak‘mq SKIL 3eemS oObVious desprte Tts definttion.

Team. building. 3Killr Teamioovk Yequives that a manager estadiy

tust, motivate Progress, Cxplpr b eccentyic PYima donnal
fyanSistion Quevage People imo foP Pevfomers, eliminate mistis
and digexse OPinions into team divection-

elling Skill: succe ss€ul Project monagers must Sell ot Stake holdey S
on decision and Priorities , sell candidates on job PoSitions, sell
changes 10 the Stotus quo tn the face of vesistance, and Selt acheve
ments OQainst Objectives- in Practice 1 Selling Yequaves continuous

IMPROWING, ALTOMATION THRpUGH SOt TwiRE GW
OAAANNNNNS AAAANANANANANAAA- ANNAAAAA~ AANANY AANANS

S fin importont €mphasts 0f O Modeyn APPYOACh 1S 10 define

the deueloPment And maintenance endiYonment &S frst- Closs
avtifact of the Precess:

- A Yobust, ntegvated development €nuivonment must Suppoit
the automabion O the develsPment Process.

= Rourd- tyip €ngineeving 1S Oteym used 1o destvibe the
Key Cafoility Of endivonments that Support 1tevative deuvelopment.

—) Fov-woid Engineexing Ts the automation oOf one anmeevfng
avtifact Fvom another absStyact Ye Pyesentotion .

- Round- 1viP €ngineeying destyibes The enuivonment Suppert
needed 1o Change Gn oikifact freely and have ethey arifacts
Qutomatically clhanged Sothat consistenty 1S maintained
omong the @ntive set of vequivements, desian, .
ond (gzleP\ogment ay Lo CLS. : G R

o Requivements analysis ond evolution Octivites consume yp-f.
of lite-Cycle Costs

. Softwave design activites haue On impact pm move than so-.
of the YveSources.

Coding and urit “esting OCtivites €onsume albout So-- OF
Spttoare development €ffovt and Schedule:
Tee bk OchkiNTeS Con CONSUME G R mitich as Smel. AL Oyntortla

. Confiquiotion Control and change management Qe Critial Section
than can consume oS mich s 25+ OF YeSoures on lavge-
scale Yvoject-

. Documentation activites can consume mofe than 3o°l: of
Project &nginee¥ing Yesouy(es-

. Pyoject Management business administiation, and Progress
oRessment con Consume &S mucha s 20 *f+ OF Project budgets

fAchiewing Required BUQIYY

Mony of tohat 0e accepted today oS Software best
pyactices ave devived from the deuelopment Pyocess and

technologres SummoyiZed:
The Key Pyoctices that improve ovevll sottue quolity

include. the following -
Focusing oN driing vequivements ond Citical USe (Gses

eaxly inthe li$e cyele, focusing On yequements completeness
ond Hoceasiity late inthe titecycie, and focusing -thyougrout
the lifecycle on kalance betueen vequivements exolwtion, design

elplution Ond Plan evolution:

vsing Metvics ONd sndicators o measuye the Progress
and quolity of on O Chitective @GS Tt Gnuokes fyom &
high- level POTOYPe o o fully compliant Product

GeneRAL QUALTTY IMPRpUEMENTS - (WITH R THOPERN PROCESS.

CONENTIONAL ™MoDer
QUALITY DRIVER PR pRE PR | RHINE
Requivement s - Disconlered lte Re $olled cayly
mis undeY&thdinq
Dexte\opment Yi Sk Unknowon untillate bNdevstoodand
Yesolued Gmltj
commey Ci Ql Hogﬂ\j ONavailable tilla quality
ComPonents dyilerbut Hvade
0£f mug be yesoe
- ealyin-the lifecyce.
chonge manogement late inthe lifecycle, Ealy inlifecycle,
chootic and maligmt stvaiqht forwod
— - ond benign .
Dest gn exroy s Dipvered late Resoled cavly
Resouvce adequacy unpredictoble HIpRICiR e
schedutes o\ey Constiained Tunable 10 quality,
- Pevtoymance,

3 o8tuaye Procesy
Yiqoy

Document - baSed

Test Pevfovmance

Papey-onSed analysis
AY fPCoxnto Syryi\n.

Hanaged: meaSuwied

_ond tool-Sopported

?,mcutmg PYotypes,
Caylu PexdHYMamo

LS

inteavated life- Cycle Cuionments that Suphot

« Prontiding
ntvoly change management

eovly and Continuous confiquyation Co
viqorous design Methods-

using \iSual modeling and highey level lanquages that

3uppoyt Ovchitectwal contypl . abstaction, yveliable Program

Yeuse, ond Se if documentation-
+ eaxly ond ontinupus nsSight info Pevformance iSSue s thyough

d emonstyation- based €valuotions.
The Hypical Chvonology of eNents in Pevformonce Qssessment

wos follows.

Project Tnspection :- The Proposed design Loas osserted o be

low vk toith odequie perfoymance Mavgin-

Initial design veview *~ OPHmistic as®esSments OF Gdequate desiy,
maygin | aS QOLY\\& benChmayks weve bosed MOSH“ on Papey andysis

or Yough Simulakion 0F the eritical theads.

Mid fe cycle design vewiew - The OSsesements Stovted wh?tthnq
oway at the mavgin, 0S Caly benchmarks and nitat tests

beqan exposing the OPtimism inherent in Cayliey estimates.

Inteqyation anad fost - Sevious fetformance PYoblems LieYe vn -
Covered « necesitating fundamerttal Chonges 7 the axchitectve

P .

PeeR INSPECTION St A PRAGAHATIC U 1€l

) The Peey inspections ove fvequently Oveyhyped &S the Key ospeg>
of o quality System-

.TYO\Y\S'\HOY\'\Y\CJ -E’nq{neev'mq nfovmadion £yom 6ne ootitact et
fo omopthey, Theveby CiSLSIINg the ConSistency, feasibility,
vndexstandaBility, and technplogy Constraints nherent in the
engineeving Otifacts -

« Majov milestng demonstyations that fovce the avtifacts o ke
assessed 0Qainst tangible Cyitevia inthe Context o Yelevant
UsSe CSes.

o Envivonment 1pols that ensuye YepveSentation viq e, Cons?stemj
Completeness and Change Control- '

+ Life-cycle testing fov detotled insight into Critical +rode.ofe
QCceptance Cyitevia, and Yequivements compliance.

‘ chanqemamgement metyics fov objective -Cnsighl: into muitiple
Pevspective Change tvends ond Comueygence OY divevgence
from quality and Progress 9oals.

Tnall but Aviyial Coses, GvChitectwal issues owe exposed only
Hhyough move Yigovous gngineeying activities

o finalysis, Prototyping oY Experimeritotion

* Constyucting design mModels

* Committing the Cuent State of the design model 40 an

UNIT - 11
The old way and the new: The principles of conventional software Engineering, principles of modern software
management, transitioning to an iterative process.

THE OLD WAY AND THE NEW

THE PRINCIPLES OF CONVENTIONAL SOFTWARE ENGINEERING
1. Make quality #1. Quality must be quantified and mechanisms put into place to motivate its achievement

2.High-quality software are possible. Techniques that have been demonstrated to increase quality include
Involving the customer, prototyping, simplifying design, conducting Inspections and hiring the best people

3. Give products to customers early. No matter how hard you try to learn users' needs during the
Requirementsphase, the most effective way to determine real needs is to give users a product and let them \
play with it

4. Determine the problem before writing the requirements. When faced with what they believe is a

problem, most engineers rush to offer a solution. Evaluate design alternatives. After the requirements are

agreed upon, you must examine a variety of architectures and algorithms. You certainly do not want to use”

architecture™ simply because it was used in the requirements specification.

5.Use an appropriate process model. Each project must select a process that makes -the most sense for that

project on the basis of corporate culture, willingness to take risks, application area, volatility of requirements,

and the extent to which requirements are well understood.

6.Use different languages for different phases. Our industry's eternal thirst for simple solutions to complex

problems has driven many to declare that the best development method is one that uses the same notation

throughout the life cycle.

7.Minimize intellectual distance. To minimize intellectual distance, the software's structure should be as close

as possible to the real-world structure

8.Put techniques before tools. An undisciplined software engineer with a tool becomes a dangerous,

undisciplined software engineer

9. Get it right before you make it faster. It is far easier to make a working program run faster than it is to

make a fast program work. Don't worry about optimization during initial coding

10. Inspect code. Inspecting the detailed design and code is a much better way to find errors than testing

12.Good management is more important than good technology. Good management motivates people to do

their best, but there are no universal "right" styles of management.

13.People are the key to success. Highly skilled people with appropriate experience, talent, and training are

key.

14.Follow with care. Just because everybody is doing something does not make it right for you. It may be

right, but you must carefully assess its applicability to your environment.

15.Take responsibility. When a bridge collapses we ask, "What did the engineers do wrong?" Even when

software fails, we rarely ask this. The fact is that in any engineering discipline, the best methods can be used to

produce awful designs, and the most antiquated methods to produce elegant designs.

16.Understand the customer's priorities. It is possible the customer would tolerate 90% of the functionality

delivered late if they could have 10% of it on time.

17.The more they see, the more they need. The more functionality (or performance) you provide a user, the

more functionality (or performance) the user wants.

18. Plan to throw one away. One of the most important critical success factors is whether or not a product is
entirely new. Such brand-new applications, architectures, interfaces, or algorithms rarely work the first
time.

19. Design for change. The architectures, components, and specification techniques you use must
accommodate change.

20. Design without documentation is not design. | have often heard software engineers say, "l have finished

the design. All that is left is the documentation. ™

21. Use tools, but be realistic. Software tools make their users more efficient.

22. Avoid tricks. Many programmers love to create programs with tricks constructs that perform a function
correctly, but in an obscure way. Show the world how smart you are by avoiding tricky code

23. Encapsulate. Information-hiding is a simple, proven concept that results in software that is easier to
test and much easier to maintain.

24. Use coupling and cohesion. Coupling and cohesion are the best ways to measure software's inherent
maintainability and adaptability

25. Use the McCabe complexity measure. Although there are many metrics available to report the inherent
complexity of software, none is as intuitive and easy to use as Tom McCabe's

26. Don't test your own software. Software developers should never be the primary testers of their

ownsoftware.

27.Analyze causes for errors. It is far more cost-effective to reduce the effect of an error by preventing it than

it is to find and fix it. One way to do this is to analyze the causes of errors as they are detected

28.Realize that software's entropy increases. Any software system that undergoes continuous change will

grow in complexity and will become more and more disorganized

29.People and time are not interchangeable. Measuring a project solely by person-months makes little sense

30.Expect excellence. Your employees will do much better if you have high expectations for them.

THE PRINCIPLES OF MODERN SOFTWARE MANAGEMENT

Top 10 principles of modern software management are. (The first five, which are the main themes of my
definition of aniterative process, are summarized in Figure 4-1.)

1.Base the process on an architecture-first approach. This requires that a demonstrable balance be
achieved among the driving requirements, the architecturally significant design decisions, and the life-
cycle plans before the resources are committed for full-scale development.
2.Establish an iterative life-cycle process that confronts risk early. With today's sophisticated software
systems, it is not possible to define the entire problem, design the entire solution, build the software,
and then test the end product in sequence. Instead, an iterative process that refines the problem
understanding, an effective solution, and an effective plan over several iterations encourages a balanced
treatment of all stakeholder objectives. Major risks must be addressed early to increase predictability

and avoid expensive downstream scrap and rework.
3.Transition design methods to emphasize component-based development. Moving from a line-of-

code mentality to a component-based mentality is necessary to reduce the amount of human-generated
sourcecode and custom development.

4. Establish a change management environment. The dynamics of iterative development,
including concurrent workflows by different teams working on shared artifacts, necessitates

objectively controlled baselines.
Waterfall Process Iterative Process
Architecture first

Requirements first
Custom development Component-based development

Change avoidance
Ad hoc tools

Change management
Round-trip engineering

— Planning and
| Design

Requirem. is | -
| Reag ints analysis | v analysis

i

— N
Code and unit test f
— — —— b4

i Subsystem integration ™\
e ™
System test
— e Assessment Implementation

Architecture-first approach The central design eilement
Design and integration first, then production and test

[lterative life-cycle process ‘}—b The risk management element

Risk control through ever-increasing function, performance, quality

l Component-based development }—-» The technology element
Object-oriented methods, rigorous notations, visual modeliing

(fhange management environment The control element

Metrics, trends, process instrumentation

l Rowund-trip engineering 7——» The automation element
Complementary tools, integrated environments

FIGURE 4-1. The top five principles of a moderrn process

5. Enhance change freedom through tools that support round-trip engineering. Round-trip
engineering is the environment support necessary to automate and synchronize _
engineering information in different formats(such as requirements specifications, design models,

source code, executable code, test cases).

6. Capture design artifacts in rigorous, model-based notation. A model based approach (such as
UML) supports the evolution of semantically rich graphical and textual design notations. _

7. Instrument the process for objective quality control and progress assessment. Life-cycle
assessment of the progress and the quality of all intermediate products must be integrated into the process.

8. Use a demonstration-based approach to assess intermediate artifacts. _ _
9. Plan intermediate releases in groups of usage scenarios with evolving levels of detail. _It IS
essential that the software management process drive toward early and continuous demonstrations

within the operational context of the system, namely its use cases. _ o
10. Establish a configurable process that is economically scalable. No single process is suitable

for all software developments.

Table 4-1 maps top 10 risks of the conventional process to the key attributes and principles of a modernprocess

TABLE 4-1. Modern process approaches for solving conventional problems

CONVENTIONAL PROCESS:

MODERN PROCESS: INHERENT RISK

TOP 10 RISKS IMPACT RESOLUTION FEATURES
1. Late breakage and Quality, Architecture-first approach
excessive scrap/rework cost, Iterative development
schedule
Automated change management
Risk-confronting process
2. Attrition of key personx;el Quality, . Successful, early iterations
::’E;’dule Trustworthy management and planning
3. Inadequate development Cost, Environments as first-class artifacts of the process
LESONLOcs schedule Industrial-strength, integrated environments
Model-based engineering artifacts
Round-trip engineering
4. Adversarial stakeholders Cost, Demonstration-based review
schedule Use-case-oriented requirements/testing
5. Necessary technology Cost, Architecture-first approach -
- insertion schedule Component-based development
6. Requirements creep Cost, Iterative development)
schedule Use case modeling
Demonstration-based review
7. Analysis paralysis Schedule Demonstration-based review
) : Use-case-oriented requirements/testing
8. Inadequate performance Quality Demonstration-based performance assessment
- Early architecture performance feedback
9. Overemphasis on artifacts Schedule Demonstration-based assessment
Objective quality control
10. Inadequate function Quality Iterative development

Early prototypes, incremental releases

Life cycle phases: Engineering and production stages, inception, Elaboration, construction,
transition phases.

Life cycle phases

Characteristic of a successful software development process is the well-defined separation between "research

and development" activities and "production” activities.

A modern software development process must be defined to support the following:

e Evolution of the plans, requirements, and architecture, together with well defined synchronization

points

¢ Risk management and objective measures of progress and quality
¢ Evolution of system capabilities through demonstrations of increasing functionality

ENGINEERING AND PRODUCTION STAGES

Two stages of the life cycle are:

1. The engineering stage, driven by less predictable but smaller teams doing design and synthesis

activities

2. The production stage, driven by more predictable but larger teams doing construction, test, and
deployment activities

IABLE 5-1. Tke two stages of the life cycle: engineering and production
LIFE-CYCLE ENGINEERING STAGE PROD[;CTION STAC;F
ASPECT EMPHASIS EMPHASIS 3
Risk reduction Schedule, technical feasibility Cost

Products

Architecture baseline

Product release baselines

Activities

Assessment

Analysis, design, planning

Implementation, testing

Demonstration, inspection, analysis

Testing

Economics

Management

Resolving diseconomies of scale

Exploiting economies of scale

Planning

Operations

The transition between engineering and production is a crucial event for the various stakeholders. The
production plan has been agreed upon, and there is a good enough understanding of the problem and the

solution that all stakeholders can make a firm commitment to go ahead with production.

Engineering stage is decomposed into two distinct phases, inception and elaboration, and the production stage
into construction and transition. These four phases of the life-cycle process are loosely mapped to the

conceptual framework of the spiral model as shown in Figure 5-1

’ Engineering Stage Production Stage

Inception Elaboration l Construction Transition
I cate s =5 — - - — — —
i

~ iy T

f e :\\

Wi e Xy

2 o S e P
L : : Id;:a | Architecture Beta Releases Products

i — }

FIGURE 5-1. I'be phases of the life-cycle process

INCEPTION PHASE

PRIMARY OBJECTIVES
e Establishing the project's software scope and boundary conditions,
e Discriminating the critical use cases of the system and the primary scenarios of operations
e Demonstrating at least one candidate architecture

e Estimating the cost and schedule for the entire project (including detailed estimates for the
elaboration phase)

e Estimating potential risks (sources of unpredictability)

ESSENTIAL ACTMTIES
e Formulating the scope of the project.

e The information repository should be sufficient to define the problem space and derive the acceptance
criteria for the end product.

e Synthesizing the architecture.
e Planning and preparing a business case..
PRIMARY EVALUATION CRITERIA
e Do all stakeholders concur on the scope definition and cost and schedule estimates?
e Are requirements understood, as evidenced by the fidelity of the critical use cases?
e Are the cost and schedule estimates, priorities, risks, and development processes credible?

e Do the depth and breadth of an architecture prototype demonstrate the preceding criteria?

ELABORATION PHASE

PRIMARY OBJECTIVES

¢ Baselining the architecture as rapidly as practical (establishing a configuration-managed snapshot in which
all changes are rationalized, tracked, and maintained)

e Baselining the vision

e Baselining a high-fidelity plan for the construction phase

e Demonstrating that the baseline architecture will support the vision at a reasonable cost in a reasonable
time

ESSENTIAL ACTIVITIES
e Elaborating the vision.
e Elaborating the process and infrastructure.
e Elaborating the architecture and selecting components.

PRIMARY EVALUATION CRITERIA
e |sthe vision stable?
e Is the architecture stable?

e Does the executable demonstration show that the major risk elements have been addressed and credibly
resolved?

e Is the construction phase plan of sufficient fidelity, and is it backed up with a credible basis of estimate?

e Do all stakeholders agree that the current vision can be met if the current plan is executed to develop the
complete system in the context of the current architecture?

e Are actual resource expenditures versus planned expenditures acceptable?

CONSTRUCTION PHASE

During the construction phase, all remaining components and application features are integrated into the
application, and all features are thoroughly tested. Newly developed software is integrated where required. The
construction phase represents a production process, in which emphasis is placed on managing resources and
controlling operations to optimize costs, schedules,and quality.

PRIMARY OBJECTIVES
e Minimizing development costs by optimizing resources and avoiding unnecessary scrap and rework
e Achieving adequate quality as rapidly as practical
e Achieving useful versions (alpha, beta, and other test releases) as rapidly as practical

ESSENTIAL ACTIVITIES

e Resource management, control, and process optimization
e Complete component development and testing against evaluation criteria

e Assessment of product releases against acceptance criteria of the vision

PRIMARY EVALUATION CRITERIA

e |s this product baseline mature enough to be deployed in the user community? (Existing defects are
not obstacles to achieving the purpose of the next release.)

e |s this product baseline stable enough to be deployed in the user community? (Pending changes are

not obstacles to achieving the purpose of the next release.)
o Are the stakeholders ready for transition to the user community?

o Are actual resource expenditures versus planned expenditures acceptable?

TRANSITION PHASE

The transition phase is entered when a baseline is mature enough to be deployed in the end-user domain. This
typically requires that a usable subset of the system has been achieved with acceptable quality levels and user
documentation so that transition to the user will provide positive results. This phase could include any of the
following activities:

1. Beta testing to validate the new system against user expectations
2. Betatesting and parallel operation relative to a legacy system it is replacing
3. Conversion of operational databases

4. Training of users and maintainers
The transition phase concludes when the deployment baseline has achieved the complete vision.

PRIMARY OBJECTIVES
1. Achieving user self-supportability
2. Achieving stakeholder concurrence that deployment baselines are complete and consistent with the
evaluation criteria of the vision

. Achieving final product baselines as rapidly and cost-effectively as practical

w

ESSENTIAL ACTIVITIES

. Synchronization and integration of concurrent construction increments into consistent deployment
baselines

. Deployment-specific engineering (cutover, commercial packaging and production, sales rollout kit
development, field personnel training)

o

(6]

6. Assessment of deployment baselines against the complete vision and acceptance criteria in the
requirements set

EVALUATION CRITERIA
. Is the user satisfied?

o

. Are actual resource expenditures versus planned expenditures acceptable?

Avrtifacts of the process

THE ARTIFACT SETS

To make the development of a complete software system manageable, distinct collections of information are
organized into artifact sets. Artifact represents cohesive information that typically is developed and reviewed as
a single entity.

Life-cycle software artifacts are organized into five distinct sets that are roughly partitioned by the
underlying language of the set: management (ad hoc textual formats), requirements (organized text and models
of the problem space), design (models of the solution space), implementation (human-readable programming
language and associated source files), and deployment (machine-process able languages and associated files).
The artifact sets are shown in Figure 6-1.

‘ !

= | .
' Requirements Set Design Set Implementation Set Deployment Set

1. Vision document 1. Design model(s) 1. Source code 1. Integrated product
2. Requirements 2. Test model baselines executable
model(s) 3. Software 2. Associated baselines
architecture compile-time 2. Associated
} description files run-time files
3. Component 3. User manual [

" executables

- : Management Set
’ Planning Artifacts Operational Artifacts
1 Wor_k breakdown structure 5. Release descriptions
‘ 2. Business case 6. Status assessments
3. Release specifications 7. Software change order database
4. Software development plan 8. Deployment documents
I 9. Environment
FIGURE 6-1. Owerview of the artifact sets

THE MANAGEMENT SET
The management set captures the artifacts associated with process planning and execution.
Management set artifacts are evaluated, assessed, and measured through a combination of the following:
e Relevant stakeholder review
e Analysis of changes between the current version of the artifact and previous versions
e Major milestone demonstrations of the balance among all artifacts and, in particular, the accuracy of
the business case and vision artifacts

THE ENGINEERING SETS

The engineering sets consist of the requirements set, the design set, the implementation set, and the
deployment set.

Requirements Set
Requirements artifacts are evaluated, assessed, and measured through a combination of the following:

¢ Analysis of consistency with the release specifications of the management set
e Analysis of consistency between the vision and the requirements models

e Mapping against the design, implementation, and deployment sets to evaluate the consistency and
completeness and the semantic balance between information in the different sets

e Analysis of changes between the current version of requirements artifacts and previous versions
(scrap, rework, and defect elimination trends)

e Subjective review of other dimensions of quality

Design Set
UML notation is used to engineer the design models for the solution. The design set contains varying levels
of abstraction that represent the components of the solution space (their identities, attributes, static
relationships, dynamic interactions). The design set is evaluated, assessed, and measured through a combination
of the following:
e Analysis of the internal consistency and quality of the design model
e Analysis of consistency with the requirements models
e Translation into implementation and deployment sets and notations (for example, traceability, source
code generation, compilation, linking) to evaluate the consistency and completeness and the semantic
balance between information in the sets
e Analysis of changes between the current version of the design model and previous versions (scrap,
rework, and defect elimination trends)
e Subjective review of other dimensions of quality
Implementation set

The implementation set includes source code (programming language notations) that represents the tangible

implementations of components (their form, interface, and dependency relationships)

Implementation sets are human-readable formats that are evaluated, assessed, and measured through a
combination of the following:

e Analysis of consistency with the design models

e Translation into deployment set notations (for example, compilation and linking) to evaluate the
consistency and completeness among artifact sets

e Assessment of component source or executable files against relevant evaluation criteria through
inspection, analysis, demonstration, or testing

e Execution of stand-alone component test cases that automatically compare expected results with
actual results

e Analysis of changes between the current version of the implementation set and previous versions
(scrap, rework, and defect elimination trends)

e Subjective review of other dimensions of quality

10

Deployment Set

The deployment set includes user deliverables and machine language notations, executable software, and the
build scripts, installation scripts, and executable target specific data necessary to use the product in its target
environment.

Deployment sets are evaluated, assessed, and measured through a combination of the following:

e Testing against the usage scenarios and quality attributes defined in the requirements set to evaluate
the consistency and completeness and the~ semantic balance between information in the two sets

e Testing the partitioning, replication, and allocation strategies in mapping components of the
implementation set to physical resources of the deployment system (platform type, number, network
topology)

e Testing against the defined usage scenarios in the user manual such as installation, user-oriented
dynamic reconfiguration, mainstream usage, and anomaly management

e Analysis of changes between the current version of the deployment set and previous versions (defect
elimination trends, performance changes)

e Subjective review of other dimensions of quality
Each artifact set is the predominant development focus of one phase of the life cycle; the other sets take on
check and balance roles. As illustrated in Figure 6-2, each phase has a predominant focus: Requirements are the
focus of the inception phase; design, the elaboration phase; implementation, the construction phase; and deploy-
ment, the transition phase. The management artifacts also evolve, but at a fairly constant level across the life
cycle.
Most of today's software development tools map closely to one of the five artifact sets.
1. Management: scheduling, workflow, defect tracking, change management,
documentation, spreadsheet, resource management, and presentation tools

2. Requirements: requirements management tools

3. Design: visual modeling tools

4. Implementation: compiler/debugger tools, code analysis tools, test coverage analysis tools, and test
management tools

5. Deployment: test coverage and test automation tools, network management tools, commercial components
(operating systems, GUIs, RDBMS, networks, middleware), and installation tools.

11

Inception : Elaboration Construction ' Transition

Management

Requirements

Design

Implementation

Deployment

1 "
i) % " X i bt

&ﬁw Dlg e
FIGURE 6-2. Life-cycle focus on artifact sets

Implementation Set versus Deployment Set

The separation of the implementation set (source code) from the deployment set (executable code) is important
because there are very different concerns with each set. The structure of the information delivered to the user
(and typically the test organization) is very different from the structure of the source code information.
Engineering decisions that have an impact on the quality of the deployment set but are relatively
incomprehensible in the design and implementation sets include the following:

e Dynamically reconfigurable parameters (buffer sizes, color palettes, number of servers, number of
simultaneous clients, data files, run-time parameters)

e Effects of compiler/link optimizations (such as space optimization versus speed optimization)

e Performance under certain allocation strategies (centralized versus distributed, primary and shadow
threads, dynamic load balancing, hot backup versus checkpoint/rollback)

e Virtual machine constraints (file descriptors, garbage collection, heap size, maximum record size,
disk file rotations)

e Process-level concurrency issues (deadlock and race conditions)

e Platform-specific differences in performance or behavior

ARTIFACT EVOLUTION OVER THE LIFE CYCLE

Each state of development represents a certain amount of precision in the final system description. Early in
the life cycle, precision is low and the representation is generally high. Eventually, the precision of
representation is high and everything is specified in full detail. Each phase of development focuses on a

particular artifact set. At the end of each phase, the overall system state will have progressed on all sets, as
illustrated in Figure 6-3.

12

Engineering Stage Production Stage

Inception Elaboration Construction Transition
26|58 2 gls]e e = | = 2 l5ls
o | O € | o §?D E | & §‘§) i
3 E | |] 3 3 ¥
 WHUSE YUEE 4B
i M N "EE 0 BN
l___‘_Marmgemem |} Ma?na;gernem 1[___Nlanagomgnt El Ma_m_gemem 7

FIGURE 6-3. Life-cycle evolution of the artifact sets

The inception phase focuses mainly on critical requirements usually with a secondary focus on an initial
deployment view. During the elaboration phase, there is much greater depth in requirements, much more
breadth in the design set, and further work on implementation and deployment issues. The main focus of the
construction phase is design and implementation. The main focus of the transition phase is on achieving
consistency and completeness of the deployment set in the context of the other sets.

TEST ARTIFACTS
e The test artifacts must be developed concurrently with the product from inception through
deployment. Thus, testing is a full-life-cycle activity, not a late life-cycle activity.

e The test artifacts are communicated, engineered, and developed within the same artifact sets as the
developed product.

e The test artifacts are implemented in programmable and repeatable formats (as software programs).

e The test artifacts are documented in the same way that the product is documented.
e Developers of the test artifacts use the same tools, techniques, and training as the software engineers
developing the product.

Test artifact subsets are highly project-specific, the following example clarifies the relationship between test
artifacts and the other artifact sets. Consider a project to perform seismic data processing for the purpose of oil
exploration. This system has three fundamental subsystems: (1) a sensor subsystem that captures raw seismic
data in real time and delivers these data to (2) a technical operations subsystem that converts raw data into an
organized database and manages queries to this database from (3) a display subsystem that allows workstation
operators to examine seismic data in human-readable form. Such a system would result in the following test
artifacts:

e Management set. The release specifications and release descriptions capture the objectives,
evaluation criteria, and results of an intermediate milestone. These artifacts are the test plans and test
results negotiated among internal project teams. The software change orders capture test results
(defects, testability changes, requirements ambiguities, enhancements) and the closure criteria
associated with making a discrete change to a baseline.

13

e Requirements set. The system-level use cases capture the operational concept for the system and the
acceptance test case descriptions, including the expected behavior of the system and its quality
attributes. The entire requirement set is a test artifact because it is the basis of all assessment
activities across the life cycle.

e Design set. A test model for nondeliverable components needed to test the product baselines is
captured in the design set. These components include such design set artifacts as a seismic event
simulation for creating realistic sensor data; a "virtual operator” that can support unattended, after-
hours test cases; specific instrumentation suites for early demonstration of resource usage; transaction
rates or response times; and use case test drivers and component stand-alone test drivers.

e Implementation set. Self-documenting source code representations for test components and test
drivers provide the equivalent of test procedures and test scripts. These source files may also include
human-readable data files representing certain statically defined data sets that are explicit test source
files. Output files from test drivers provide the equivalent of test reports.

e Deployment set. Executable versions of test components, test drivers, and data files are provided.

MANAGEMENT ARTIFACTS

The management set includes several artifacts that capture intermediate results and ancillary information
necessary to document the product/process legacy, maintain the product, improve the product, and
improve the process.

Business Case

The business case artifact provides all the information necessary to determine whether the project is worth
investing in. It details the expected revenue, expected cost, technical and management plans, and backup
data necessary to demonstrate the risks and realism of the plans. The main purpose is to transform the
vision into economic terms so that an organization can make an accurate ROI assessment. The financial
forecasts are evolutionary, updated with more accurate forecasts as the life cycle progresses. Figure 6-4
provides a default outline for a business case.

Software Development Plan

The software development plan (SDP) elaborates the process framework into a fully detailed plan. Two
indications of a useful SDP are periodic updating (it is not stagnant shelfware) and understanding and
acceptance by managers and practitioners alike. Figure 6-5 provides a default outline for a software
development plan.

14

: Context (domain, market, scope)
Il. Technical approach
A. Feature set achievement plan
B. Quality achievement plan
C. Engineering trade-offs and technical risks
Ill. Management approach
A. Schedule and schedule risk assessment
B. Objective measures of success
IV. Evolutionary appendixes
A. Financial forecast
1. Cost estimate
2. Revenue estimate
3. Bases of estimates

FIGURE 6-4. Typical business case outline

. Context (scope, objectives)
Il. Software development process
A. Project primitives
1. Life-cycle phases

2. Artifacts
3. Workflows
g 4. Checkpoints

' B. Major milestone scope and content
C. Process improvement procedures
lll. Software engineering environment
A. Process automation (hardware and software resource configuration)
B. Resource allocation procedures (sharing across organizations, security
access)
IV. Software change management
A. Configuration control board plan and procedures
B. Software change order definitions and procedures
C. Configuration baseline definitions and procedures
V. Software assessment
A. Metrics collection and reporting procedures
B. Risk management procedures (risk identification, tracking, and resolution)
C. Status assessment plan
D. Acceptance test plan
VI. Standards and procedures
A. Standards and procedures for technical artifacts
VIl. Evolutionary appendixes
A. Minor milestone scope and content
B. Human resources (organization, staffing plan, training plan)

FIGURE 6-5. Typical software development plan outline

15

Work Breakdown Structure

Work breakdown structure (WBS) is the vehicle for budgeting and collecting costs. To monitor and control a
project's financial performance, the software project manlger must have insight into project costs and how they
are expended. The structure of cost accountability is a serious project planning constraint.

Software Change Order Database

Managing change is one of the fundamental primitives of an iterative development process. With greater
change freedom, a project can iterate more productively. This flexibility increases the content, quality, and
number of iterations that a project can achieve within a given schedule. Change freedom has been achieved in
practice through automation, and today's iterative development environments carry the burden of change
management. Organizational processes that depend on manual change management techniques have
encountered major inefficiencies.

Release Specifications

The scope, plan, and objective evaluation criteria for each baseline release are derived from the vision statement
as well as many other sources (make/buy analyses, risk management concerns, architectural considerations,
shots in the dark, implementation constraints, quality thresholds). These artifacts are intended to evolve along
with the process, achieving greater fidelity as the life cycle progresses and requirements understanding matures.
Figure 6-6 provides a default outline for a release specification

‘ l. Iteration content
il Measurable objectives
A. Evaluation criteria
B. Followthrough approach
. Demonstration plan
A. Schedule of activities
B. Team responsibilities
IV. Operational scenarios (use cases demonstrated)
, A. Demonstration procedures
B. Traceability to vision and business case

FIGURE 6-6. Typical release specification outline

Release Descriptions

Release description documents describe the results of each release, including performance against each of the
evaluation criteria in the corresponding release specification. Release baselines should be accompanied by a
release description document that describes the evaluation criteria for that configuration baseline and provides
substantiation (through demonstration, testing, inspection, or analysis) that each criterion has been addressed in
an acceptable manner. Figure 6-7 provides a default outline for a release description.

Status Assessments
Status assessments provide periodic snapshots of project health and status, including the software project

16

manager's risk assessment, quality indicators, and management indicators. Typical status assessments should
include a review of resources, personnel staffing, financial data (cost and revenue), top 10 risks, technical
progress (metrics snapshots), major milestone plans and results, total project or product scope & action items

l. Context
A. Release baseline content
B. Release metrics
Il Release notes
A. Release-specific constraints or limitations
ill. Assessment resulis
A. Substantiation of passed evaluation criteria
B. Follow-up plans for failed evaluation criteria
C. Recommendations for next release
IV. Outstanding issues
A. Action items
B. Post-mortem summary of lessons learned

FIGURE 6-7. Typical release description outline

Environment

An important emphasis of a modern approach is to define the development and maintenance environment as a
first-class artifact of the process. A robust, integrated development environment must support automation of the
development process. This environment should include requirements management, visual modeling, document
automation, host and target programming tools, automated regression testing, and continuous and integrated
change management, and feature and defect tracking.

Deployment

A deployment document can take many forms. Depending on the project, it could include several document
subsets for transitioning the product into operational status. In big contractual efforts in which the system is
delivered to a separate maintenance organization, deployment artifacts may include computer system operations
manuals, software installation manuals, plans and procedures for cutover (from a legacy system), site surveys,
and so forth. For commercial software products, deployment artifacts may include marketing plans, sales rollout
Kits, and training courses.

Management Artifact Sequences

In each phase of the life cycle, new artifacts are produced and previously developed artifacts are updated to
incorporate lessons learned and to capture further depth and breadth of the solution. Figure 6-8 identifies a
typical sequence of artifacts across the life-cycle phases.

17

A Informal version

A Controlled baseline
Inception Elaboration

Construction

Transition

lteration 1 | Hteration 2 | Heration 3 | lteration4 | Hteration 5 | tteration 6

Iteration 7

Management Set
1. Work breakdown structure
2. Business case

A

3. Release specifications

4. Software development plan

B N o
> > > > >

A

5. Release descriptions

6. Status assessments

7. Software change order data
8. Deployment documents

9. Environment

Requirements Set
1. Vision document

2. Requirements model(s)

Design Set
1. Design model(s)

2. Test model

BD>> >

3. Architecture description

Implementation Set
1. Source code baselines

2. Associated compile-time files
3. Component executables

Deployment Set

1. Integrated product-executable
baselines

2. Associated run-time files

L R o N N N S S U G

3. User manual

FIGURE 6-8. Artifact sequences across a typical life cycle

A A

A A

i A

> > > >
> > > >

A
A
A

A

>> > P> > B

LU0 P YT RIBASIATRE K ORI IRS A

> > > >

> > > >

18

ENGINEERING ARTIFACTS
Most of the engineering artifacts are captured in rigorous engineering notations such as UML, programming
languages, or executable machine codes. Three engineering artifacts are explicitly intended for more general
review, and they deserve further elaboration.

Vision Document

The vision document provides a complete vision for the software system under development and. supports the
contract between the funding authority and the development organization. A project vision is meant to be
changeable as understanding evolves of the requirements, architecture, plans, and technology. A good vision
document should change slowly. Figure 6-9 provides a default outline for a vision document.

i Feature set description
A Precedence and priority
i Quality attributes and ranges
1. Required constraints
A External interfaces
| V. Evolutionary appendixes
| A. Use cases
! 1. Primary scenarios
_— Acceptance criteria and tolerances
B. Desired freedoms (potential change scenarios)
FIGURE 6-9. Typical visiornn docurert outline

Architecture Description

The architecture description provides an organized view of the software architecture under development. It is
extracted largely from the design model and includes views of the design, implementation, and deployment sets
sufficient to understand how the operational concept of the requirements set will be achieved. The breadth of
the architecture description will vary from project to project depending on many factors. Figure 6-10 provides a
default outline for an architecture description.

I Architecture overview
j A. Objectives
B. Constraints
C. Freedoms
1l Architecture views
A. Design view
B. Process view
C. Component view
D. Deployment view
’ Hi. Architectural interactions
A. Operational concept under primary scenarios
B. Operational concept under secondary scenarios
C. Operational concept under anomalous conditions
V. Architecture performance
V. Rationale, trade-offs, and other substantiation

1

FIGURE 6-10. Typical architecture description outline

19

Software User Manual

The software user manual provides the user with the reference documentation necessary to support the delivered
software. Although content is highly variable across application domains, the user manual should include
installation procedures, usage procedures and guidance, operational constraints, and a user interface description,
at a minimum. For software products with a user interface, this manual should be developed early in the life
cycle because it is a necessary mechanism for communicating and stabilizing an important subset of
requirements. The user manual should be written by members of the test team, who are more likely to
understand the user's perspective than the development team.

PRAGMATIC ARTIFACTS

ePeople want to review information but don't understand the language of the artifact. Many interested
reviewers of a particular artifact will resist having to learn the engineering language in which the artifact is
written. It is not uncommon to find people (such as veteran software managers, veteran quality assurance
specialists, or an auditing authority from a regulatory agency) who react as follows: "I'm not going to learn
UML, but I want to review the design of this software, so give me a separate description such as some
flowcharts and text that | can understand.”

ePeople want to review the information but don't have access to the tools. It is not very common for the

Development organization to be fully tooled; it is extremely rare that the/other stakeholders have any capability
to review the engineering artifacts on-line. Consequently, organizations are forced to exchange paper
documents. Standardized formats (such as UML, spreadsheets, Visual Basic, C++, and Ada 95), visualization
tools, and the Web are rapidly making it economically feasible for all stakeholders to exchange information
Electronically.

eHuman-readable engineering artifacts should use rigorous notations that are complete, consistent, and
used in a self-documenting manner. Properly spelled English words should be used for all identifiers and
descriptions. Acronyms and abbreviations should be used only where they are well accepted jargon in the
context of the component's usage. Readability should be emphasized and the use of proper English words
should be required in all engineering artifacts. This practice enables understandable representations, browse
able formats (paperless review), more-rigorous notations, and reduced error rates.

eUseful documentation is self-defining: It is documentation that gets used.

ePaper is tangible; electronic artifacts are too easy to change. On-line and Web-based artifacts can be
changed easily and are viewed with more skepticism because of their inherent volatility.

20

UNIT - 11
Model based software architectures: A Management perspective and technical perspective.
Work Flows of the process: Software process workflows, Iteration workflows.

7. Model based software architecture

ARCHITECTURE: A MANAGEMENT PERSPECTIVE

The most critical technical product of a software project is its architecture: the infrastructure,
control, and data interfaces that permit software components to cooperate as a system and
software designers to cooperate efficiently as a team. When the communications media
include multiple languages and intergroup literacy varies, the communications problem can
become extremely complex and even unsolvable. If a software development team is to be
successful, the inter project communications, as captured in the software architecture, must
be both accurate and precise

From a management perspective, there are three different aspects of architecture.

1. An architecture (the intangible design concept) is the design of a software system
this includes all engineering necessary to specify a complete bill of materials.

2. An architecture baseline (the tangible artifacts) is a slice of information across the
engineering artifact sets sufficient to satisfy all stakeholders that the vision
(function and quality) can be achieved within the parameters of the business case
(cost, profit, time, technology, and people).

3. An architecture description (a human-readable representation of an architecture,
which is one of the components of an architecture baseline) is an organized subset
of information extracted from the design set model(s). The architecture
description communicates how the intangible concept is realized in the tangible
artifacts.

The number of views and the level of detail in each view can vary widely.
The importance of software architecture and its close linkage with modern software
development processes can be summarized as follows:

e Achieving a stable software architecture represents a significant project milestone

at which the critical make/buy decisions should have been resolved.

e Architecture representations provide a basis for balancing the trade-offs between
the problem space (requirements and constraints) and the solution space (the
operational product).

e The architecture and process encapsulate many of the important (high-payoff or
high-risk) communications among individuals, teams, organizations, and
stakeholders.

e Poor architectures and immature processes are often given as reasons for project
failures.

e A mature process, an understanding of the primary requirements, and a
demonstrable architecture are important prerequisites for predictable planning.

e Architecture development and process definition are the intellectual steps that map
the problem to a solution without violating the constraints; they require human
innovation and cannot be automated.

ARCHITECTURE: A TECHNICAL PERSPECTIVE
An architecture framework is defined in terms of views that are abstractions of the UML
models in the design set. The design model includes the full breadth and depth of
information. An architecture view is an abstraction of the design model; it contains only the
architecturally significant information. Most real-world systems require four views:
design,

process, component, and deployment. The purposes of these views are as follows:

e Design: describes architecturally significant structures and functions of the design
model

e Process: describes concurrency and control thread relationships among the design,
component, and deployment views

e Component: describes the structure of the implementation set

e Deployment: describes the structure of the deployment set
Figure 7-1 summarizes the artifacts of the design set, including the architecture views and
architecture description.
The requirements model addresses the behavior of the system as seen by its end users,
analysts, and testers. This view is modeled statically using use case and class diagrams, and
dynamically using sequence, collaboration, state chart, and activity diagrams.
e The use case view describes how the system's critical (architecturally significant)
use cases are realized by elements of the design model. It is modeled statically
using use case diagrams, and dynamically using any of the UML behavioral
diagrams.
e The design view describes the architecturally significant elements of the design
model. This view, an abstraction of the design model, addresses the basic structure
and functionality of the solution. It is modeled statically using class and object
diagrams, and dynamically using any of the UML behavioral diagrams.

e The process view addresses the run-time collaboration issues involved in executing
the architecture on a distributed deployment model, including the logical software
network topology (allocation to processes and threads of control), interprocess
communication, and state management. This view is modeled statically using

deployment diagrams, and dynamically using any of the UML behavioral
diagrams.

e The component view describes the architecturally significant elements of the
implementation set. This view, an abstraction of the design model, addresses the
software source code realization of the system from the perspective of the project's
integrators and developers, especially with regard to releases and configuration
management. It is modeled statically using component diagrams, and dynamically
using any of the UML behavioral diagrams.

e The deployment view addresses the executable realization of the system, including
the allocation of logical processes in the distribution view (the logical software
topology) to physical resources of the deployment network (the physical system
topology). It is modeled statically using deployment diagrams, and dynamically
using any of the UML behavioral diagrams.

Generally, an architecture baseline should include the following:

e Requirements: critical use cases, system-level quality objectives, and priority

relationships among features and qualities

e Design: names, attributes, structures, behaviors, groupings, and relationships of
significant classes and components

e Implementation: source component inventory and bill of materials (number, name,
purpose, cost) of all primitive components

e Deployment: executable components sufficient to demonstrate the critical use
cases and the risk associated with achieving the system qualities

Requirements Design Implementation | Deployment

The requirements set may
include UML models
describing the problem
space.

The design set includes all
UML design models
describing the solution
space.

Depending on its complexity, a system may require several
models or partitions of a single model.

The design, process, and
use case models provide
for visualization of the
logical and behavioral
aspects of the design.

The component mode!
provides for visualization of
the implementation set.

The deployment model
provides for visualization of
the deployment set.

—p
— —»
An architecture is described through several views, P o
which are extracts of design models that capture the B
significant structures, collaborations, and behaviors.

Architecture Description
Document

Design view
Process view
Use case view
Component view
Deployment view
Other views (optional)
Other material:

« Rationale

» Constraints

S ol

FIGURE 7-1. Architecture, an organized and abstracted view into the design models

8. Workflow of the process
SOFTWARE PROCESS WORKFLOWS

'I_'he term WORKFLOWS is used to mean a thread of cohesive and mostly sequential activi-
ties. Workflows are mapped to product artifacts There are seven top-level workflows:

1. Management workflow: controlling the process and ensuring win conditions for all

stakeholders

2. Environment workflow: automating the process and evolving the maintenance
environment

3. Requirements workflow: analyzing the problem space and evolving the
requirements artifacts

4. Design workflow: modeling the solution and evolving the architecture and design
artifacts

5. Implementation workflow: programming the components and evolving the
implementation and deployment artifacts

6. Assessment workflow: assessing the trends in process and product quality
7. Deployment workflow: transitioning the end products to the user

Figure 8-1 illustrates the relative levels of effort expected across the phases in each of the

top-level workflows.

Inception ' Elaboration Construction - Transition

Management — 1 i I T T I I I

+—

Environment ¢ 1 i] '

Requirements h__‘[—_—[_—_—‘___‘f

Design = .o a0 T e OB TR il s e o

Implementation s

« PR e

: r__‘_—l——j

Assessment = I 1 [| l

Deployment : - ' e

FIGURE 8-1. Activity levels across the life-cycle phases

Table 8-1 shows the allocation of artifacts and the emphasis of each workflow in each of the

life-cycle phases of inception, elaboration, construction, and transition.

TABLE 8-1. The artifacts and life-cycle emphases associated with each workflow

WORKFLOW ARTIFACTS LIFE-CYCLE PHASE EMPHASIS
Management Business case Inception: Prepare business case and vision
Software development Elaboration: Plan development
plan Construction: Monitor and control development
Status assessments Transition: Monitor and control deployment
Vision
Work breakdown
structure
Environment Environment Inception: Define development environment and
Software change order change management infrastructure
database Elaboration: Install development environment
and establish change management database
Construction: Maintain development environ-
ment and software change order database
Transition: Transition maintenance environment
and software change order database
Requirements Requirements set Inception: Define operational concept
Release specifications Elaboration: Define architecture objectives
Vision Construction: Define iteration objectives
Transition: Refine release objectives
Design Design set Inception: Formulate architecture concept
Architecture description Elaboration: Achieve architecture baseline
Construction: Design components
Transition: Refine architecture and components
Implementation Implementation set Inception: Support architecture prototypes
Deployment set Elaboration: Produce architecture baseline
Construction: Produce complete componentry
Transition: Maintain components
Assessment Release specifications Inception: Assess plans, vision, prototypes
Release descriptions Elaboration: Assess architecture
User manual Construction: Assess interim releases
Deployment set Transition: Assess product releases
Deployment Deployment set Inception: Analyze user community

Elaboration: Define user manual
Construction: Prepare transition materials

Transition: Transition product to user

ITERATION WORKFLOWS

Iteration consists of a loosely sequential set of activities in various proportions, depending on
where the iteration is located in the development cycle. Each iteration is defined in terms of a
set of allocated usage scenarios. An individual iteration's workflow, illustrated in Figure 8-2,
generally includes the following sequence:
e Management: iteration planning to determine the content of the release and develop
the detailed plan for the iteration; assignment of work packages, or tasks, to the

development team

e Environment: evolving the software change order database to reflect all new
baselines and changes to existing baselines for all product, test, and environment

components

Allocated
usage scenarios

Results from the
previous iteration

* Up-to-date risk assessment
» Controlled baselines of artifacts

1§ 1§

Management

Requirerhents

* Demonstrable results
- Requirements understanding
— Design features/performance
— Plan credibility

Design

Implementation

Assessment

FIGURE 8-2. The workflow of an iteration

Deployment

1§

Results for the next
iteration

e Requirements: analyzing the baseline plan, the baseline architecture, and the
baseline requirements set artifacts to fully elaborate the use cases to be
demonstrated at the end of this iteration and their evaluation criteria; updating any
requirements set artifacts to reflect changes necessitated by results of this

iteration's engineering activities

e Design: evolving the baseline architecture and the baseline design set artifacts to
elaborate fully the design model and test model components necessary to
demonstrate against the evaluation criteria allocated to this iteration; updating
design set artifacts to reflect changes necessitated by the results of this iteration's

engineering activities

¢ Implementation: developing or acquiring any new components, and enhancing or
modifying any existing components, to demonstrate the evaluation criteria
allocated to this iteration; integrating and testing all new and modified
components with existing baselines (previous versions)

e Assessment: evaluating the results of the iteration, including compliance with the
allocated evaluation criteria and the quality of the current baselines; identifying
any rework required and determining whether it should be performed before
deployment of this release or allocated to the next release; assessing results to
improve the basis of the subsequent iteration's plan

e Deployment: transitioning the release either to an external organization (such as a
user, independent verification and validation contractor, or regulatory agency) or
to internal closure by conducting a post-mortem so that lessons learned can be
captured and reflected in the next iteration
Iterations in the inception and elaboration phases focus on management. Requirements, and
design activities. Iterations in the construction phase focus on design, implementation, and
assessment. Iterations in the transition phase focus on assessment and deployment. Figure 8-
3 shows the emphasis on different activities across the life cycle. An iteration represents the
state of the overall architecture and the complete deliverable system. An increment
represents the current progress that will be combined with the preceding iteration to from the
next iteration. Figure 8-4, an example of a simple development life cycle, illustrates the
differences between iterations and increments.

[Management ’

l Requirements ’

[' Design I

} Implementation I

Inception and Elaboration Phases l[Assessment ‘

L Deployment W

[Management l

{ Fiequirementsj

L Design]

l Implementation j
Construction Phase [Assessment 7
L Deployment
Management
Eequirements
’ Design -,
L Implementation j
iti A
Transition Phase L Ssessment
L Deployment T
FIGURE 8-3. Iteration emphasis across the life cycle

Inception Elaboration Construction Transition

100%
Progress can be measured as the % of
» components under configuration control,
@ the % of demonstrable use cases, etc.
&
o

Iteration 1 Iteration 2 | Iteration 3
Increment 4
4 Increment 5
f Increment 6 Iteration 7
. : A ;
lteration 1 Iteration 2 Iteration 3 Iteration 4 lteration 5 Iteration 6

Application-specific 3
components B B
Domain-specific (2
components @ 3 3 3 [3
Middleware and common 2 4 2 O
mechanism components 2 4
Operating system and O 3 K| K|
networking components 3

Iteration 7 adds no new
components, only upgrades,
fixes, and enhancements.

Iteration 1 Iteration 2 | Iteration 3

Iterations 1, 2, and 3 include
architecturally significant
components.

Increment 5

Increment 6 Iteration 7

FIGURE 8-4. A typical build sequence associated with a layered architecture

	THE OLD WAY AND THE NEW
	THE PRINCIPLES OF MODERN SOFTWARE MANAGEMENT
	8. Use a demonstration-based approach to assess intermediate artifacts.
	Life cycle phases
	ENGINEERING AND PRODUCTION STAGES
	INCEPTION PHASE
	ELABORATION PHASE
	CONSTRUCTION PHASE
	TRANSITION PHASE

	Artifacts of the process
	THE ARTIFACT SETS
	THE MANAGEMENT SET
	THE ENGINEERING SETS
	Requirements Set
	Design Set
	Implementation set
	Deployment Set
	ARTIFACT EVOLUTION OVER THE LIFE CYCLE
	TEST ARTIFACTS
	MANAGEMENT ARTIFACTS
	Business Case
	Software Development Plan
	Work Breakdown Structure
	Software Change Order Database
	Release Specifications
	Release Descriptions
	Status Assessments
	Environment
	Deployment
	Management Artifact Sequences
	ENGINEERING ARTIFACTS
	Vision Document
	Architecture Description
	Software User Manual
	 Useful documentation is self-defining: It is documentation that gets used.

	7. Model based software architecture
	ARCHITECTURE: A MANAGEMENT PERSPECTIVE
	ARCHITECTURE: A TECHNICAL PERSPECTIVE

	8. Workflow of the process
	SOFTWARE PROCESS WORKFLOWS
	ITERATION WORKFLOWS

